# HG changeset patch # User Shinji KONO # Date 1596167879 -32400 # Node ID 4af94768e3725c8bf4850f30dd7f7fc0fc7d0394 # Parent f6f08d5a49410cea46855b6304a5a3915d51421e ... diff -r f6f08d5a4941 -r 4af94768e372 OPair.agda --- a/OPair.agda Fri Jul 31 12:46:45 2020 +0900 +++ b/OPair.agda Fri Jul 31 12:57:59 2020 +0900 @@ -203,12 +203,13 @@ ZFP⊗ : {A B : HOD} → ZFP A B ≡ A ⊗ B ZFP⊗ {A} {B} = ==→o≡ record { eq→ = lemma0 ; eq← = lemma1 } where + AxB : HOD + AxB = Replace B (λ b → Replace A (λ a → < a , b > )) lemma0 : {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x lemma0 {px} record { proj1 = (pair x y) ; proj2 = p2 } = product→ (d→∋ A (proj1 (p2 (pair x y) ))) (d→∋ B (proj2 (p2 (pair x y) ))) lemma1 : {x : Ordinal} → odef (A ⊗ B) x → odef (ZFP A B) x - lemma1 {x} lt = ⊥-elim (lt (λ u not → proj2 (proj1 not) (λ y p → lemma2 u y p ))) where - lemma2 : (u y : Ordinal) → odef B y ∧ (u ≡ od→ord (Replace A (λ a → < a , ord→od y >))) → ⊥ - lemma2 = {!!} + lemma1 {x} lt with union← AxB (ord→od x) (d→∋ (A ⊗ B) lt) + ... | t = {!!} diff -r f6f08d5a4941 -r 4af94768e372 ordinal.agda --- a/ordinal.agda Fri Jul 31 12:46:45 2020 +0900 +++ b/ordinal.agda Fri Jul 31 12:57:59 2020 +0900 @@ -244,7 +244,6 @@ lemma2 (ordinal (Suc lx) (Φ (Suc lx))) (case1 x) (case1 (s≤s (s≤s lt))) not = lemma3 x lt where lemma3 : {n l : Nat} → (Suc (Suc n) ≤ Suc l) → l ≤ n → ⊥ lemma3 (s≤s sn≤l) (s≤s l≤n) = lemma3 sn≤l l≤n - open Oprev Oprev-p : (x : Ordinal) → Dec ( Oprev (Ordinal {suc n}) osuc x ) Oprev-p (ordinal lv (Φ lv)) = no (λ not → lemma (oprev not) (oprev=x not) ) where