# HG changeset patch # User Shinji KONO # Date 1670029033 -32400 # Node ID 4b22a2ece4e806f51d0a778aed41c2cb58401685 # Parent dfbac4b59bae12631a5f490527d075380c513812 ... diff -r dfbac4b59bae -r 4b22a2ece4e8 src/zorn.agda --- a/src/zorn.agda Sat Dec 03 08:58:46 2022 +0900 +++ b/src/zorn.agda Sat Dec 03 09:57:13 2022 +0900 @@ -247,7 +247,6 @@ x≤sup = IsSUP.x≤sup isSUP -- - -- -- f (f ( ... (supf y))) f (f ( ... (supf z1))) -- / | / | @@ -256,7 +255,8 @@ -- o< o< -- -- if sup z1 ≡ sup z2, the chain is stopped at sup z1, then f (sup z1) ≡ sup z1 - +-- this means sup z1 is the Maximal, so f is <-monotonic if we have no Maximal. +-- fc-stop : ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) { a b : Ordinal } → (aa : odef A a ) →( {y : Ordinal} → FClosure A f a y → (y ≡ b ) ∨ (y << b )) → a ≡ b → f a ≡ a @@ -266,7 +266,6 @@ fc00 : b ≤ (f b) fc00 = proj1 (mf _ (subst (λ k → odef A k) a=b aa )) - ∈∧P→o< : {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A ∈∧P→o< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) @@ -354,7 +353,7 @@ chain∋init {x} x≤z = ⟪ ay , ch-init (init ay refl) ⟫ mf : ≤-monotonic-f A f - mf x ax = ⟪ case2 ( proj1 (mf< x ax)) , proj2 (mf x ax ) ⟫ + mf x ax = ? f-next : {a z : Ordinal} → odef (UnionCF A f ay supf z) a → odef (UnionCF A f ay supf z) (f a) f-next {a} ⟪ ua , ch-init fc ⟫ = ⟪ proj2 ( mf _ ua) , ch-init (fsuc _ fc) ⟫ @@ -677,7 +676,7 @@ m05 : ZChain.supf zc b ≡ b m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) ⟪ record { ax = ab ; x≤sup = λ {z} uz → IsSUP.x≤sup (proj2 is-sup) uz } , m04 ⟫ m10 : odef (UnionCF A f ay supf x) b - m10 = ZChain.cfcs zc mf< b ¬a ¬b px ¬a ¬b c = ⊥-elim ( ¬p ¬a ¬b 0 ¬a ¬b c = ⊥-elim ( ¬a (ordtrans<-≤ a ¬a ¬b c = r c - - or : {n m r : Level } {P : Set n } {Q : Set m} {R : Set r} → P ∨ Q → ( P → R ) → (Q → R ) → R - or (case1 p) p→r q→r = p→r p - or (case2 q) p→r q→r = q→r q - - -- ZChain contradicts ¬ Maximal -- -- ZChain forces fix point on any ≤-monotonic function (fixpoint) -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain -- - z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A (cf nmx) (cf-is-≤-monotonic nmx) as0 (& A)) → ⊥ + z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A (cf nmx) (cf-is-<-monotonic nmx) as0 (& A)) → ⊥ z04 nmx zc = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (MinSUP.as msp1 )))) (subst (λ k → odef A k) (sym &iso) (MinSUP.as msp1) ) @@ -1480,7 +1473,7 @@ supf = ZChain.supf zc msp1 : MinSUP A (ZChain.chain zc) - msp1 = msp0 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc + msp1 = msp0 (cf nmx) (cf-is-<-monotonic nmx) as0 zc c : Ordinal c = MinSUP.sup msp1 @@ -1494,7 +1487,7 @@ zorn01 = proj1 zorn03 zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) zorn02 {x} ax m