# HG changeset patch # User Shinji KONO # Date 1558546322 -32400 # Node ID 4d64509067d03d1ed8fdc82d56eb951032c94d9e # Parent 88b77cecaeba89fa770c42ec3857f99929ed9a9e transitive diff -r 88b77cecaeba -r 4d64509067d0 ordinal-definable.agda --- a/ordinal-definable.agda Wed May 22 19:24:11 2019 +0900 +++ b/ordinal-definable.agda Thu May 23 02:32:02 2019 +0900 @@ -26,9 +26,7 @@ postulate od→ord : {n : Level} → OD {n} → Ordinal {n} - -ord→od : {n : Level} → Ordinal {n} → OD {n} -ord→od x = record { def = λ y → x ≡ y } + ord→od : {n : Level} → Ordinal {n} → OD {n} _∋_ : { n : Level } → ( a x : OD {n} ) → Set n _∋_ {n} a x = def a ( od→ord x ) @@ -40,8 +38,8 @@ a c≤ b = (a ≡ b) ∨ ( b ∋ a ) postulate - c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord x - o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od x + c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y + o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} @@ -79,8 +77,18 @@ ... | t with t (case2 (s< (ℵΦ< {_} {_} {Φ (Suc lx)}))) c3 .(Suc lx) (ℵ lx) d not | t | () -∅2 : {n : Level} → od→ord ( od∅ {n} ) ≡ o∅ {n} -∅2 {n} = {!!} +def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x +def-subst df refl refl = df + +transitive : {n : Level } { x y z : OD {n} } → y ∋ x → z ∋ y → z ∋ x +transitive {n} {x} {y} {z} x∋y z∋y with ordtrans ( c<→o< {n} {x} {y} x∋y ) ( c<→o< {n} {y} {z} z∋y ) +... | t = lemma0 (lemma t) where + lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) + lemma xo