# HG changeset patch # User Shinji KONO # Date 1674018593 -32400 # Node ID 5eb972738f9bf836401f917aa8539849545b407a # Parent e1c6719a8c3862fa9e9b34c33d89d21b3ae45df7 ... diff -r e1c6719a8c38 -r 5eb972738f9b src/Topology.agda --- a/src/Topology.agda Wed Jan 18 09:30:26 2023 +0900 +++ b/src/Topology.agda Wed Jan 18 14:09:53 2023 +0900 @@ -395,8 +395,6 @@ fip50 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (* z) w fip50 {w} Lyw = subst (λ k → odef k w ) (sym fip56) Lyw - - -- some day Compact→FIP : Set (suc n) Compact→FIP = {L : HOD} → (top : Topology L ) → Compact top → FIP top @@ -416,20 +414,28 @@ -- FIP is UFL +record NFIP {P : HOD} (TP : Topology P) {L : HOD} (LP : L ⊆ Power P ) (X : Ordinal) : Set n where + field + osx : * X ⊆ OS TP + fip : {u x : Ordinal} → * u ⊆ (L \ * X) → Subbase (* u) x → o∅ o< x + UFLP→FIP : {P : HOD} (TP : Topology P) → {L : HOD} (LP : L ⊆ Power P ) → ( (F : Filter {L} {P} LP ) (FP : filter F ∋ P) (UF : ultra-filter F ) → UFLP TP LP F FP UF ) → FIP TP UFLP→FIP {P} TP {L} LP uflp = record { limit = uf00 ; is-limit = {!!} } where fip : {X : Ordinal} → * X ⊆ CS TP → Set n - fip {X} CSX = {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x - N : {X : Ordinal} → (CSX : * X ⊆ CS TP ) → fip {X} CSX → HOD - N {X} CSX fip = record { od = record { def = λ x → Base L P X x ∧ ( o∅ o< x ) } ; odmax = ? ; ¬a ¬b 0 ¬a ¬b bq⊂bp = subst₂ (λ j k → odef j k ) (sym *iso) refl record { owner = bp ; ao = Bbp ; ox = mf36 } where - mf36 : odef (* bp) (& ((* p) ∩ (* q))) - mf36 = IsFilter.filter2 mf30 bbp (proj2 bq⊂bp bbq) Lpq where - mf30 : IsFilter {L} {P} LP bp - mf30 = proj1 ( B⊆FX Bbp ) - mf32 : ¬ odef (Union B) o∅ - mf32 record { owner = owner ; ao = bo ; ox = o0 } with proj1 ( B⊆FX bo ) - ... | record { f⊆L = f⊆L ; filter1 = filter1 ; filter2 = filter2 ; proper = proper } = ⊥-elim ( proper o0 ) - mf14 : IsFilter LP (& (Union B)) - mf14 = record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) mf16 ; filter1 = mf17 ; filter2 = mf31 ; proper = subst (λ k → ¬ odef k o∅) (sym *iso) mf32 } - mf15 : filter F ⊆ Union B - mf15 {x} Fx = record { owner = & mf20 ; ao = mf18 ; ox = subst (λ k → odef k x) (sym *iso) (mf22 Fx) } where - mf22 : odef (filter F) x → odef mf20 x - mf22 Fx = subst (λ k → odef k x) *iso ( proj2 (B⊆FX mf18) Fx ) - mf13 : odef FX (& (Union B)) - mf13 = ⟪ mf14 , subst (λ k → filter F ⊆ k ) (sym *iso) mf15 ⟫ - mf42 : {z : Ordinal} → odef B z → * z ⊆ Union B - mf42 {z} Bz {x} zx = record { owner = _ ; ao = Bz ; ox = zx } - mf40 : {z : Ordinal} → odef B z → (z ≡ & (Union B)) ∨ ( * z ⊂ * (& (Union B)) ) - mf40 {z} Bz with B⊆FX Bz - ... | ⟪ filterz , F⊆z ⟫ with osuc-≡< ( ⊆→o≤ {* z} {Union B} (mf42 Bz) ) - ... | case1 eq = case1 (trans (sym &iso) eq ) - ... | case2 lt = case2 ⟪ subst₂ (λ j k → j o< & k ) refl (sym *iso) lt , subst (λ k → * z ⊆ k) (sym *iso) (mf42 Bz) ⟫ - mx : Maximal FX - mx = Zorn-lemma (∈∅< FX∋F) SUP⊆ - imf : IsFilter {L} {P} LP (& (Maximal.maximal mx)) - imf = proj1 (Maximal.as mx) - mf00 : (* (& (Maximal.maximal mx))) ⊆ L - mf00 = IsFilter.f⊆L imf - mf01 : { p q : HOD } → L ∋ q → (* (& (Maximal.maximal mx))) ∋ p → p ⊆ q → (* (& (Maximal.maximal mx))) ∋ q - mf01 {p} {q} Lq Fq p⊆q = IsFilter.filter1 imf Lq Fq - (λ {x} lt → subst (λ k → odef k x) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso lt ) )) - mf02 : { p q : HOD } → (* (& (Maximal.maximal mx))) ∋ p → (* (& (Maximal.maximal mx))) ∋ q → L ∋ (p ∩ q) - → (* (& (Maximal.maximal mx))) ∋ (p ∩ q) - mf02 {p} {q} Fp Fq Lpq = subst₂ (λ j k → odef (* (& (Maximal.maximal mx))) (& (j ∩ k ))) *iso *iso ( - IsFilter.filter2 imf Fp Fq (subst₂ (λ j k → odef L (& (j ∩ k ))) (sym *iso) (sym *iso) Lpq )) - mf : Filter {L} {P} LP - mf = record { filter = * (& (Maximal.maximal mx)) ; f⊆L = mf00 - ; filter1 = mf01 - ; filter2 = mf02 } - mf52 : filter F ⊆ Maximal.maximal mx - mf52 = subst (λ k → filter F ⊆ k ) *iso (proj2 mf53) where - mf53 : FX ∋ Maximal.maximal mx - mf53 = Maximal.as mx - mf50 : (f : Filter LP) → ¬ (filter f ∋ od∅) → filter F ⊆ filter f → ¬ (* (& (zorn.Maximal.maximal mx)) ⊂ filter f) - mf50 f proper F⊆f = subst (λ k → ¬ ( k ⊂ filter f )) (sym *iso) (Maximal.¬maximal ¬a ¬b 0 ¬a ¬b bq⊂bp = subst₂ (λ j k → odef j k ) (sym *iso) refl record { owner = bp ; ao = Bbp ; ox = mf36 } where + mf36 : odef (* bp) (& ((* p) ∩ (* q))) + mf36 = IsFilter.filter2 mf30 bbp (proj2 bq⊂bp bbq) Lpq where + mf30 : IsFilter {L} {P} LP bp + mf30 = proj1 ( B⊆FX Bbp ) + mf32 : ¬ odef (Union B) o∅ + mf32 record { owner = owner ; ao = bo ; ox = o0 } with proj1 ( B⊆FX bo ) + ... | record { f⊆L = f⊆L ; filter1 = filter1 ; filter2 = filter2 ; proper = proper } = ⊥-elim ( proper o0 ) + mf14 : IsFilter LP (& (Union B)) + mf14 = record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) mf16 ; filter1 = mf17 ; filter2 = mf31 ; proper = subst (λ k → ¬ odef k o∅) (sym *iso) mf32 } + mf15 : filter F ⊆ Union B + mf15 {x} Fx = record { owner = & mf20 ; ao = mf18 ; ox = subst (λ k → odef k x) (sym *iso) (mf22 Fx) } where + mf22 : odef (filter F) x → odef mf20 x + mf22 Fx = subst (λ k → odef k x) *iso ( proj2 (B⊆FX mf18) Fx ) + mf13 : odef FX (& (Union B)) + mf13 = ⟪ mf14 , subst (λ k → filter F ⊆ k ) (sym *iso) mf15 ⟫ + mf42 : {z : Ordinal} → odef B z → * z ⊆ Union B + mf42 {z} Bz {x} zx = record { owner = _ ; ao = Bz ; ox = zx } + mf40 : {z : Ordinal} → odef B z → (z ≡ & (Union B)) ∨ ( * z ⊂ * (& (Union B)) ) + mf40 {z} Bz with B⊆FX Bz + ... | ⟪ filterz , F⊆z ⟫ with osuc-≡< ( ⊆→o≤ {* z} {Union B} (mf42 Bz) ) + ... | case1 eq = case1 (trans (sym &iso) eq ) + ... | case2 lt = case2 ⟪ subst₂ (λ j k → j o< & k ) refl (sym *iso) lt , subst (λ k → * z ⊆ k) (sym *iso) (mf42 Bz) ⟫ + mx : Maximal FX + mx = Zorn-lemma (∈∅< FX∋F) SUP⊆ + imf : IsFilter {L} {P} LP (& (Maximal.maximal mx)) + imf = proj1 (Maximal.as mx) + mf00 : (* (& (Maximal.maximal mx))) ⊆ L + mf00 = IsFilter.f⊆L imf + mf01 : { p q : HOD } → L ∋ q → (* (& (Maximal.maximal mx))) ∋ p → p ⊆ q → (* (& (Maximal.maximal mx))) ∋ q + mf01 {p} {q} Lq Fq p⊆q = IsFilter.filter1 imf Lq Fq + (λ {x} lt → subst (λ k → odef k x) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso lt ) )) + mf02 : { p q : HOD } → (* (& (Maximal.maximal mx))) ∋ p → (* (& (Maximal.maximal mx))) ∋ q → L ∋ (p ∩ q) + → (* (& (Maximal.maximal mx))) ∋ (p ∩ q) + mf02 {p} {q} Fp Fq Lpq = subst₂ (λ j k → odef (* (& (Maximal.maximal mx))) (& (j ∩ k ))) *iso *iso ( + IsFilter.filter2 imf Fp Fq (subst₂ (λ j k → odef L (& (j ∩ k ))) (sym *iso) (sym *iso) Lpq )) + mf : Filter {L} {P} LP + mf = record { filter = * (& (Maximal.maximal mx)) ; f⊆L = mf00 + ; filter1 = mf01 + ; filter2 = mf02 } + mf52 : filter F ⊆ Maximal.maximal mx + mf52 = subst (λ k → filter F ⊆ k ) *iso (proj2 mf53) where + mf53 : FX ∋ Maximal.maximal mx + mf53 = Maximal.as mx + mf50 : (f : Filter LP) → ¬ (filter f ∋ od∅) → filter F ⊆ filter f → ¬ (* (& (zorn.Maximal.maximal mx)) ⊂ filter f) + mf50 f proper F⊆f = subst (λ k → ¬ ( k ⊂ filter f )) (sym *iso) (Maximal.¬maximal