# HG changeset patch # User Shinji KONO # Date 1657371099 -32400 # Node ID 663b34227faf586d55da590cf86c6182b8b3c2ea # Parent c5c8e37d9a6c3cdb47e6e2951bc9ad3855667758 ... diff -r c5c8e37d9a6c -r 663b34227faf src/zorn.agda --- a/src/zorn.agda Sat Jul 09 18:36:23 2022 +0900 +++ b/src/zorn.agda Sat Jul 09 21:51:39 2022 +0900 @@ -465,33 +465,23 @@ ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : (x : Ordinal) → ZChain1 A f mf ay x) → ((z : Ordinal) → z o< x → ZChain A f mf ay zc0 z) → ZChain A f mf ay zc0 x - ind f mf {y} ay x zc0 prev = zc4 where - zc : {z1 : Ordinal} → z1 o< x → ZChain A f mf ay zc0 z1 - zc z1 with Oprev-p x - ... | yes op = ? where - -- - -- we have previous ordinal to use induction - -- - px = Oprev.oprev op - supf : Ordinal → HOD - supf x = ? -- ChainF A f mf ay x zc0 - -- zc : ZChain A f mf ay zc0 (Oprev.oprev op) - -- zc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) - px ¬a ¬b c = schain A∋schain : {x : HOD } → schain ∋ x → A ∋ x - A∋schain (case1 zx ) = ZChain.chain⊆A (zc ?) zx + A∋schain (case1 zx ) = ZChain.chain⊆A zc zx A∋schain {y} (case2 fx ) = A∋fc (& sp) f mf fx s⊆A : schain ⊆' A - s⊆A {x} (case1 zx) = ZChain.chain⊆A (zc ?) zx + s⊆A {x} (case1 zx) = ZChain.chain⊆A zc zx s⊆A {x} (case2 fx) = A∋fc (& sp) f mf fx cmp : {a b : HOD} (za : odef chain0 (& a)) (fb : FClosure A f (& sp) (& b)) → Tri (a < b) (a ≡ b) (b < a ) cmp {a} {b} za fb with SUP.x ¬c (λ eq → ¬b (sym eq)) a @@ -569,17 +559,17 @@ ... | tri> ¬a ¬b c = tri< c (λ eq → ¬b (sym eq)) ¬a scmp (case2 fa) (case2 fb) = subst₂ (λ a b → Tri (a < b) (a ≡ b) (b < a ) ) *iso *iso (fcn-cmp (& sp) f mf fa fb) scnext : {a : Ordinal} → odef schain a → odef schain (f a) - scnext {x} (case1 zx) = case1 (ZChain.f-next (zc ?) zx) + scnext {x} (case1 zx) = case1 (ZChain.f-next zc zx) scnext {x} (case2 sx) = case2 ( fsuc x sx ) scinit : {x : Ordinal} → odef schain x → * y ≤ * x - scinit {x} (case1 zx) = ZChain.initial (zc ?) zx - scinit {x} (case2 sx) with (s≤fc (& sp) f mf sx ) | SUP.x ¬a ¬b c = ⊥-elim (¬a b