# HG changeset patch # User Shinji KONO # Date 1648975993 -32400 # Node ID 6c22ee73ff06cf6af02bfb93ec0674a76e1bb55c # Parent fea0c2454b85982d2908786b0dd7ec8462de0449 ... diff -r fea0c2454b85 -r 6c22ee73ff06 src/BAlgbra.agda --- a/src/BAlgbra.agda Sun Apr 03 11:34:01 2022 +0900 +++ b/src/BAlgbra.agda Sun Apr 03 17:53:13 2022 +0900 @@ -57,6 +57,13 @@ [a-b]∩b=0 {A} {B} = ==→o≡ record { eq← = λ lt → ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt )) ; eq→ = λ {x} lt → ⊥-elim (proj2 (proj1 lt ) (proj2 lt)) } +U-F=∅→F⊆U : {F U : HOD} → ((x : Ordinal) → ¬ ( odef F x ∧ ( ¬ odef U x ))) → F ⊆ U +U-F=∅→F⊆U {F} {U} not = record { incl = gt02 } where + gt02 : { x : Ordinal } → odef F x → odef U x + gt02 {x} fx with ODC.∋-p O U (* x) + ... | yes y = subst (λ k → odef U k ) &iso y + ... | no n = ⊥-elim ( not x ⟪ fx , subst (λ k → ¬ odef U k ) &iso n ⟫ ) + ∪-Union : { A B : HOD } → Union (A , B) ≡ ( A ∪ B ) ∪-Union {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x diff -r fea0c2454b85 -r 6c22ee73ff06 src/ODUtil.agda --- a/src/ODUtil.agda Sun Apr 03 11:34:01 2022 +0900 +++ b/src/ODUtil.agda Sun Apr 03 17:53:13 2022 +0900 @@ -66,6 +66,10 @@ od⊆→o≤ : {x y : HOD } → x ⊆ y → & x o< osuc (& y) od⊆→o≤ {x} {y} lt = ⊆→o≤ {x} {y} (λ {z} x>z → subst (λ k → def (od y) k ) &iso (incl lt (d→∋ x x>z))) +⊆→= : {F U : HOD} → F ⊆ U → U ⊆ F → F =h= U +⊆→= {F} {U} FU UF = record { eq→ = λ {x} lt → subst (λ k → odef U k) &iso (incl FU (subst (λ k → odef F k) (sym &iso) lt) ) + ; eq← = λ {x} lt → subst (λ k → odef F k) &iso (incl UF (subst (λ k → odef U k) (sym &iso) lt) ) } + subset-lemma : {A x : HOD } → ( {y : HOD } → x ∋ y → (A ∩ x ) ∋ y ) ⇔ ( x ⊆ A ) subset-lemma {A} {x} = record { proj1 = λ lt → record { incl = λ x∋z → proj1 (lt x∋z) } diff -r fea0c2454b85 -r 6c22ee73ff06 src/filter.agda --- a/src/filter.agda Sun Apr 03 11:34:01 2022 +0900 +++ b/src/filter.agda Sun Apr 03 17:53:13 2022 +0900 @@ -179,7 +179,7 @@ field mf : Filter LP proper : ¬ (filter mf ∋ od∅) - is-maximum : ( f : Filter LP ) → ¬ ( filter mf ⊆ filter f ) + is-maximum : ( f : Filter LP ) → ¬ (filter f ∋ od∅) → ¬ ( (¬ filter mf ≡ filter f ) ∧ (filter mf ⊆ filter f )) max→ultra : {L P : HOD} (LP : L ⊆ Power P) → (mx : MaximumFilter LP ) → ultra-filter ( MaximumFilter.mf mx ) max→ultra {L} {P} LP mx = record { proper = MaximumFilter.proper mx ; ultra = ultra } where @@ -189,18 +189,43 @@ ... | yes y = case1 y ... | no np with ∋-p (filter mf) (P \ p) ... | yes y = case2 y - ... | no n-p = ⊥-elim (MaximumFilter.is-maximum mx FisFilter {!!} ) where + ... | no n-p = ⊥-elim (MaximumFilter.is-maximum mx FisFilter FisProper ⟪ {!!} , record { incl = FisGreater } ⟫ ) where Y : (y : Ordinal) → (my : odef (filter mf) y ) → HOD Y y my = record { od = record { def = λ x → (x ≡ y) ∨ (x ≡ & p) } ; odmax = & L ;