# HG changeset patch # User Shinji KONO # Date 1660017177 -32400 # Node ID 7c6612b753b9564944b1c1b2d42692bc3e949f90 # Parent 358c33d3a2bd827839d0454cdb782a1b061ef53d ... diff -r 358c33d3a2bd -r 7c6612b753b9 src/zorn.agda --- a/src/zorn.agda Tue Aug 09 08:43:03 2022 +0900 +++ b/src/zorn.agda Tue Aug 09 12:52:57 2022 +0900 @@ -245,7 +245,7 @@ -- sup and its fclosure is in a chain HOD -- chain HOD is sorted by sup as Ordinal and <-ordered -- whole chain is a union of separated Chain --- minimum index is y not ϕ +-- minimum index is sup of y not ϕ -- record ChainP (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) (supf : Ordinal → Ordinal) (u : Ordinal) : Set n where @@ -254,9 +254,6 @@ order : {s z1 : Ordinal} → (lt : s o< u ) → FClosure A f (supf s ) z1 → (z1 ≡ supf u ) ∨ ( z1 << supf u ) supu=u : supf u ≡ u --- Union of supf z which o< x --- - data UChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) (supf : Ordinal → Ordinal) (x : Ordinal) : (z : Ordinal) → Set n where ch-init : {z : Ordinal } (fc : FClosure A f y z) → UChain A f mf ay supf x z @@ -266,6 +263,8 @@ ∈∧P→o< : {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A ∈∧P→o< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) +-- Union of supf z which o< x +-- UnionCF : ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) ( supf : Ordinal → Ordinal ) ( x : Ordinal ) → HOD UnionCF A f mf ay supf x @@ -285,16 +284,17 @@ f-total : IsTotalOrderSet chain sup : {x : Ordinal } → x o≤ z → SUP A (UnionCF A f mf ay supf x) - sup=u : {b : Ordinal} → (ab : odef A b) → b o< z → IsSup A (UnionCF A f mf ay supf (osuc b)) ab → supf b ≡ b + sup=u : {b : Ordinal} → (ab : odef A b) → b o≤ z → IsSup A (UnionCF A f mf ay supf (osuc b)) ab → supf b ≡ b supf-is-sup : {x : Ordinal } → (x≤z : x o≤ z) → supf x ≡ & (SUP.sup (sup x≤z) ) csupf : {b : Ordinal } → b o≤ z → odef (UnionCF A f mf ay supf b) (supf b) + -- ordering is proved here for totality and sup + fcy ¬a ¬b c = sp1 + pchain1 : HOD + pchain1 = UnionCF A f mf ay supf1 x + pcy1 : odef pchain1 y + pcy1 = ⟪ ay , ch-init (init ay refl) ⟫ + pinit1 : {y₁ : Ordinal} → odef pchain1 y₁ → * y ≤ * y₁ + pinit1 {a} ⟪ aa , ua ⟫ with ua + ... | ch-init fc = s≤fc y f mf fc + ... | ch-is-sup u u≤x is-sup fc = ≤-ftrans (<=to≤ zc7) (s≤fc _ f mf fc) where + zc7 : y <= supf1 u + zc7 = ChainP.fcy ¬a ¬b c = SUP⊆ (λ lt → chain-mono f mf ay _ ? (UnionCF⊆ ? lt )) sup1 + sup=u : {b : Ordinal} (ab : odef A b) → + b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b + sup=u {b} ab b ¬a ¬b c = ? zc4 : ZChain A f mf ay x zc4 with ODC.∋-p O A (* x) @@ -849,9 +873,9 @@ ... | tri> ¬a ¬b c with osuc-≡< z≤x ... | case1 eq = ⊥-elim ( ¬b eq ) ... | case2 lt = ⊥-elim ( ¬a lt ) - sup=u : {b : Ordinal} (ab : odef A b) → b o< x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b + sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b sup=u {b} ab b ¬a ¬b c = {!!} csupf : {z : Ordinal} → z o≤ x → odef (UnionCF A f mf ay supf1 z) (supf1 z)