# HG changeset patch # User Shinji KONO # Date 1660554147 -32400 # Node ID 81018623e3c51b4e6680d420bca178037c734f87 # Parent 2141154c521bec6920f9585ab9159047a5e2dff1 ... diff -r 2141154c521b -r 81018623e3c5 src/zorn.agda --- a/src/zorn.agda Fri Aug 12 15:16:50 2022 +0900 +++ b/src/zorn.agda Mon Aug 15 18:02:27 2022 +0900 @@ -702,40 +702,55 @@ ax : odef A x not-sup : IsSup A (UnionCF A f mf ay supf0 x) ax - UnionCF⊆ : {u x : Ordinal} → (a : u o≤ x ) → UnionCF A f mf ay supf0 u ⊆' UnionCF A f mf ay supf1 x - UnionCF⊆ {u} u ¬a ¬b px ¬a ¬b c = ? + ... | tri< a ¬b ¬c = SUP⊆ (UnionCFR⊆ {!!}) ( ZChain.sup zc (o<→≤ a) ) + ... | tri≈ ¬a b ¬c = SUP⊆ (UnionCFR⊆ {!!}) ( ZChain.sup zc (subst (λ k → k o≤ px) (sym b) o≤-refl )) + ... | tri> ¬a ¬b c = {!!} sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b sup=u {b} ab b ¬a ¬b c = ? + ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) {!!} + ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (subst (λ k → k o≤ px) (sym b) o≤-refl ) {!!} + ... | tri> ¬a ¬b c = {!!} csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 b) (supf1 b) csupf {b} b≤x with trio< b px - ... | tri< a ¬b ¬c = UnionCF⊆ o≤-refl ( ZChain.csupf zc (o<→≤ a) ) - ... | tri≈ ¬a b ¬c = UnionCF⊆ o≤-refl ( ZChain.csupf zc (subst (λ k → k o≤ px) (sym b) o≤-refl )) - ... | tri> ¬a ¬b px ¬a ¬b px ¬a ¬b c | record { eq = eq1 } = ? where -- b ≡ x, supf x ≡ sp + ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ {!!} , {!!} ⟫ + ... | tri> ¬a ¬b c | record { eq = eq1 } = {!!} where -- b ≡ x, supf x ≡ sp zc30 : x ≡ b zc30 with trio< x b ... | tri< a ¬b ¬c = ? - ... | tri≈ ¬a b ¬c = b + ... | tri≈ ¬a b ¬c = ? ... | tri> ¬a ¬b c = ? ... | case2 ¬x=sup = no-extension {!!} -- px is not f y' nor sup of former ZChain from y -- no extention @@ -856,23 +871,23 @@ supfu {u} a z = ZChain.supf (pzc (osuc u) (ob ¬a ¬b c = SUP⊆ (UnionCF0⊆ ?) usup + ... | tri< a ¬b ¬c = SUP⊆ (UnionCF⊆ a) (ZChain.sup (pzc (osuc z) {!!}) {!!} ) + ... | tri≈ ¬a b ¬c = SUP⊆ (UnionCF0⊆ {!!}) usup + ... | tri> ¬a ¬b c = SUP⊆ (UnionCF0⊆ {!!}) usup sis : {z : Ordinal} (x≤z : z o≤ x) → supf1 z ≡ & (SUP.sup (sup x≤z)) sis {z} z≤x with trio< z x ... | tri< a ¬b ¬c = {!!} where @@ -883,7 +898,7 @@ ... | case2 lt = ⊥-elim ( ¬a lt ) sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b sup=u {b} ab b ¬a ¬b c = {!!} csupf : {z : Ordinal} → z o≤ x → odef (UnionCF A f mf ay supf1 z) (supf1 z) @@ -893,7 +908,7 @@ zc9 = {!!} zc8 : odef (UnionCF A f mf ay (supfu a) z) (ZChain.supf (pzc (osuc z) (ob ¬a ¬b x