# HG changeset patch # User Shinji KONO # Date 1686190880 -32400 # Node ID 81f66cec617ea2f492dd83f35fd0e17b9c985223 # Parent f832e986427dbebb4b5951c408e38a1d325933f9 ... diff -r f832e986427d -r 81f66cec617e src/bijection.agda --- a/src/bijection.agda Wed Jun 07 11:26:03 2023 +0900 +++ b/src/bijection.agda Thu Jun 08 11:21:20 2023 +0900 @@ -1,4 +1,4 @@ -{-# OPTIONS --allow-unsolved-metas #-} +{-# OPTIONS --allow-unsolved-metas #-} module bijection where @@ -22,13 +22,13 @@ -- field -- fun← : S → R -- fun→ : R → S --- fiso← : (x : R) → fun← ( fun→ x ) ≡ x --- fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x --- +-- fiso← : (x : R) → fun← ( fun→ x ) ≡ x +-- fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x +-- -- injection : {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m) -- injection R S f = (x y : R) → f x ≡ f y → x ≡ y -open Bijection +open Bijection bi-trans : {n m l : Level} (R : Set n) (S : Set m) (T : Set l) → Bijection R S → Bijection S T → Bijection R T bi-trans R S T rs st = record { fun← = λ x → fun← rs ( fun← st x ) ; fun→ = λ x → fun→ st ( fun→ rs x ) @@ -36,17 +36,17 @@ ; fiso→ = λ x → trans (cong (λ k → fun→ st k) (fiso→ rs (fun← st x))) ( fiso→ st x) } bid : {n : Level} (R : Set n) → Bijection R R -bid {n} R = record { fun← = λ x → x ; fun→ = λ x → x ; fiso← = λ _ → refl ; fiso→ = λ _ → refl } +bid {n} R = record { fun← = λ x → x ; fun→ = λ x → x ; fiso← = λ _ → refl ; fiso→ = λ _ → refl } bi-sym : {n m : Level} (R : Set n) (S : Set m) → Bijection R S → Bijection S R -bi-sym R S eq = record { fun← = fun→ eq ; fun→ = fun← eq ; fiso← = fiso→ eq ; fiso→ = fiso← eq } +bi-sym R S eq = record { fun← = fun→ eq ; fun→ = fun← eq ; fiso← = fiso→ eq ; fiso→ = fiso← eq } open import Relation.Binary.Structures bijIsEquivalence : {n : Level } → IsEquivalence (Bijection {n} {n}) bijIsEquivalence = record { refl = λ {R} → bid R ; sym = λ {R} {S} → bi-sym R S ; trans = λ {R} {S} {T} → bi-trans R S T } --- ¬ A = A → ⊥ +-- ¬ A = A → ⊥ -- -- famous diagnostic function -- @@ -56,7 +56,7 @@ diagonal : { S : Set } → ¬ Bijection ( S → Bool ) S diagonal {S} b = diagn1 (fun→ b (λ n → diag b n) ) refl where - diagn1 : (n : S ) → ¬ (fun→ b (λ n → diag b n) ≡ n ) + diagn1 : (n : S ) → ¬ (fun→ b (λ n → diag b n) ≡ n ) diagn1 n dn = ¬t=f (diag b n ) ( begin not (diag b n) ≡⟨⟩ @@ -66,10 +66,10 @@ ≡⟨ cong (λ k → not (fun← b k n) ) dn ⟩ not (fun← b n n) ≡⟨⟩ - diag b n + diag b n ∎ ) where open ≡-Reasoning -b1 : (b : Bijection ( ℕ → Bool ) ℕ) → ℕ +b1 : (b : Bijection ( ℕ → Bool ) ℕ) → ℕ b1 b = fun→ b (diag b) b-iso : (b : Bijection ( ℕ → Bool ) ℕ) → fun← b (b1 b) ≡ (diag b) @@ -105,7 +105,7 @@ field j k : ℕ k1 : nxn→n j k ≡ i - nn-unique : {j0 k0 : ℕ } → nxn→n j0 k0 ≡ i → ⟪ j , k ⟫ ≡ ⟪ j0 , k0 ⟫ + nn-unique : {j0 k0 : ℕ } → nxn→n j0 k0 ≡ i → ⟪ j , k ⟫ ≡ ⟪ j0 , k0 ⟫ i≤0→i≡0 : {i : ℕ } → i ≤ 0 → i ≡ 0 i≤0→i≡0 {0} z≤n = refl @@ -114,7 +114,7 @@ nxn : Bijection ℕ (ℕ ∧ ℕ) nxn = record { fun← = λ p → nxn→n (proj1 p) (proj2 p) - ; fun→ = n→nxn + ; fun→ = n→nxn ; fiso← = λ i → NN.k1 (nn i) ; fiso→ = λ x → nn-id (proj1 x) (proj2 x) } where @@ -123,10 +123,10 @@ nxn→n zero (suc j) = j + suc (nxn→n zero j) nxn→n (suc i) zero = suc i + suc (nxn→n i zero) nxn→n (suc i) (suc j) = suc i + suc j + suc (nxn→n i (suc j)) - nn : ( i : ℕ) → NN i nxn→n + nn : ( i : ℕ) → NN i nxn→n n→nxn : ℕ → ℕ ∧ ℕ n→nxn n = ⟪ NN.j (nn n) , NN.k (nn n) ⟫ - k0 : {i : ℕ } → n→nxn i ≡ ⟪ NN.j (nn i) , NN.k (nn i) ⟫ + k0 : {i : ℕ } → n→nxn i ≡ ⟪ NN.j (nn i) , NN.k (nn i) ⟫ k0 {i} = refl nxn→n0 : { j k : ℕ } → nxn→n j k ≡ 0 → ( j ≡ 0 ) ∧ ( k ≡ 0 ) @@ -156,7 +156,7 @@ nid5 {suc i} {j} {k} = cong suc (nid5 {i} {j} {k} ) -- increment in the same stage - nid2 : (i j : ℕ) → suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j + nid2 : (i j : ℕ) → suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j nid2 zero zero = refl nid2 zero (suc j) = refl nid2 (suc i) zero = begin @@ -181,7 +181,7 @@ open ≡-Reasoning -- increment the stage - nid00 : (i : ℕ) → suc (nxn→n i 0) ≡ nxn→n 0 (suc i) + nid00 : (i : ℕ) → suc (nxn→n i 0) ≡ nxn→n 0 (suc i) nid00 zero = refl nid00 (suc i) = begin suc (suc (i + suc (nxn→n i 0))) ≡⟨ cong (λ k → suc (suc (i + k ))) (nid00 i) ⟩ @@ -195,10 +195,10 @@ -- -- create the invariant NN for all n -- - nn zero = record { j = 0 ; k = 0 ; k1 = refl + nn zero = record { j = 0 ; k = 0 ; k1 = refl ; nn-unique = λ {j0} {k0} eq → cong₂ (λ x y → ⟪ x , y ⟫) (sym (proj1 (nxn→n0 eq))) (sym (proj2 (nxn→n0 {j0} {k0} eq))) } - nn (suc i) with NN.k (nn i) | inspect NN.k (nn i) - ... | zero | record { eq = eq } = record { k = suc (sum ) ; j = 0 + nn (suc i) with NN.k (nn i) | inspect NN.k (nn i) + ... | zero | record { eq = eq } = record { k = suc (sum ) ; j = 0 ; k1 = nn02 ; nn-unique = nn04 } where --- --- increment the stage @@ -219,28 +219,28 @@ suc (nxn→n (NN.j (nn i)) (NN.k (nn i))) ≡⟨ cong suc (NN.k1 (nn i) ) ⟩ suc i ∎ where open ≡-Reasoning nn04 : {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ 0 , suc (sum ) ⟫ ≡ ⟪ j0 , k0 ⟫ - nn04 {zero} {suc k0} eq1 = cong (λ k → ⟪ 0 , k ⟫ ) (cong suc (sym nn08)) where -- eq : nxn→n zero (suc k0) ≡ suc i -- + nn04 {zero} {suc k0} eq1 = cong (λ k → ⟪ 0 , k ⟫ ) (cong suc (sym nn08)) where -- eq : nxn→n zero (suc k0) ≡ suc i -- nn07 : nxn→n k0 0 ≡ i nn07 = cong pred ( begin suc ( nxn→n k0 0 ) ≡⟨ nid00 k0 ⟩ nxn→n 0 (suc k0 ) ≡⟨ eq1 ⟩ - suc i ∎ ) where open ≡-Reasoning - nn08 : k0 ≡ sum + suc i ∎ ) where open ≡-Reasoning + nn08 : k0 ≡ sum nn08 = begin k0 ≡⟨ cong proj1 (sym (NN.nn-unique (nn i) nn07)) ⟩ NN.j (nn i) ≡⟨ +-comm 0 _ ⟩ NN.j (nn i) + 0 ≡⟨ cong (λ k → NN.j (nn i) + k) (sym eq) ⟩ NN.j (nn i) + NN.k (nn i) ≡⟨ NNnn ⟩ - sum ∎ where open ≡-Reasoning + sum ∎ where open ≡-Reasoning nn04 {suc j0} {k0} eq1 = ⊥-elim ( nat-≡< (cong proj2 (nn06 nn05)) (subst (λ k → k < suc k0) (sym eq) (s≤s z≤n))) where nn05 : nxn→n j0 (suc k0) ≡ i nn05 = begin - nxn→n j0 (suc k0) ≡⟨ cong pred ( begin + nxn→n j0 (suc k0) ≡⟨ cong pred ( begin suc (nxn→n j0 (suc k0)) ≡⟨ nid2 j0 k0 ⟩ nxn→n (suc j0) k0 ≡⟨ eq1 ⟩ suc i ∎ ) ⟩ - i ∎ where open ≡-Reasoning - nn06 : nxn→n j0 (suc k0) ≡ i → ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ j0 , suc k0 ⟫ + i ∎ where open ≡-Reasoning + nn06 : nxn→n j0 (suc k0) ≡ i → ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ j0 , suc k0 ⟫ nn06 = NN.nn-unique (nn i) ... | suc k | record {eq = eq} = record { k = k ; j = suc (NN.j (nn i)) ; k1 = nn11 ; nn-unique = nn13 } where --- @@ -251,23 +251,23 @@ j = NN.j (nn i) NNnn : NN.j (nn i) + NN.k (nn i) ≡ sum NNnn = sym refl - nn10 : suc (NN.j (nn i)) + k ≡ sum + nn10 : suc (NN.j (nn i)) + k ≡ sum nn10 = begin suc (NN.j (nn i)) + k ≡⟨ cong (λ x → x + k) (+-comm 1 _) ⟩ (NN.j (nn i) + 1) + k ≡⟨ +-assoc (NN.j (nn i)) 1 k ⟩ NN.j (nn i) + suc k ≡⟨ cong (λ k → NN.j (nn i) + k) (sym eq) ⟩ NN.j (nn i) + NN.k (nn i) ≡⟨ NNnn ⟩ - sum ∎ where open ≡-Reasoning + sum ∎ where open ≡-Reasoning nn11 : nxn→n (suc (NN.j (nn i))) k ≡ suc i -- nxn→n ( NN.j (nn i)) (NN.k (nn i) ≡ i nn11 = begin nxn→n (suc (NN.j (nn i))) k ≡⟨ sym (nid2 (NN.j (nn i)) k) ⟩ suc (nxn→n (NN.j (nn i)) (suc k)) ≡⟨ cong (λ k → suc (nxn→n (NN.j (nn i)) k)) (sym eq) ⟩ suc (nxn→n ( NN.j (nn i)) (NN.k (nn i))) ≡⟨ cong suc (NN.k1 (nn i)) ⟩ - suc i ∎ where open ≡-Reasoning + suc i ∎ where open ≡-Reasoning nn18 : zero < NN.k (nn i) nn18 = subst (λ k → 0 < k ) ( begin suc k ≡⟨ sym eq ⟩ - NN.k (nn i) ∎ ) (s≤s z≤n ) where open ≡-Reasoning + NN.k (nn i) ∎ ) (s≤s z≤n ) where open ≡-Reasoning nn13 : {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ suc (NN.j (nn i)) , k ⟫ ≡ ⟪ j0 , k0 ⟫ nn13 {zero} {suc k0} eq1 = ⊥-elim ( nat-≡< (sym (cong proj2 nn17)) nn18 ) where -- (nxn→n zero (suc k0)) ≡ suc i nn16 : nxn→n k0 zero ≡ i @@ -276,7 +276,7 @@ nn17 = NN.nn-unique (nn i) nn16 nn13 {suc j0} {k0} eq1 = begin ⟪ suc (NN.j (nn i)) , pred (suc k) ⟫ ≡⟨ cong (λ k → ⟪ suc (NN.j (nn i)) , pred k ⟫ ) (sym eq) ⟩ - ⟪ suc (NN.j (nn i)) , pred (NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ suc (proj1 k) , pred (proj2 k) ⟫) ( begin + ⟪ suc (NN.j (nn i)) , pred (NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ suc (proj1 k) , pred (proj2 k) ⟫) ( begin ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡⟨ nn15 ⟩ ⟪ j0 , suc k0 ⟫ ∎ ) ⟩ ⟪ suc j0 , k0 ⟫ ∎ where -- nxn→n (suc j0) k0 ≡ suc i @@ -307,24 +307,24 @@ field nlist : List Bool isBin : lton nlist ≡ n - isUnique : (x : List Bool) → lton x ≡ n → nlist ≡ x + isUnique : (x : List Bool) → lton x ≡ n → nlist ≡ x lb+1 : List Bool → List Bool -lb+1 [] = false ∷ [] -lb+1 (false ∷ t) = true ∷ t +lb+1 [] = false ∷ [] +lb+1 (false ∷ t) = true ∷ t lb+1 (true ∷ t) = false ∷ lb+1 t lb-1 : List Bool → List Bool lb-1 [] = [] -lb-1 (true ∷ t) = false ∷ t +lb-1 (true ∷ t) = false ∷ t lb-1 (false ∷ t) with lb-1 t ... | [] = true ∷ [] ... | x ∷ t1 = true ∷ x ∷ t1 -LBℕ : Bijection ℕ ( List Bool ) +LBℕ : Bijection ℕ ( List Bool ) LBℕ = record { - fun← = λ x → lton x - ; fun→ = λ n → LB.nlist (lb n) + fun← = λ x → lton x + ; fun→ = λ n → LB.nlist (lb n) ; fiso← = λ n → LB.isBin (lb n) ; fiso→ = λ x → LB.isUnique (lb (lton x)) x refl } where @@ -335,7 +335,7 @@ lton : List Bool → ℕ lton x = pred (lton1 x) - lton1>0 : (x : List Bool ) → 0 < lton1 x + lton1>0 : (x : List Bool ) → 0 < lton1 x lton1>0 [] = a0 (true ∷ x₁) = 00 (false ∷ t) = ≤-trans (lton1>0 t) x≤x+y @@ -364,7 +364,7 @@ lb=2 : {x y : ℕ } → pred x < pred y → suc (x + x ) < suc (y + y ) lb=2 {zero} {suc y} lt = s≤s 0 ¬a ¬b c = ⊥-elim ( nat-≡< (sym eq) (lb=02 c) ) where lb=02 : {x y : ℕ } → x < y → x + x ∸ 1 < y + y - lb=02 {0} {y} lt = ≤-trans lt x≤x+y + lb=02 {0} {y} lt = ≤-trans lt x≤x+y lb=02 {suc x} {y} lt = begin suc ( suc x + suc x ∸ 1 ) ≡⟨ refl ⟩ suc x + suc x ≤⟨ ≤-plus {suc x} (0 {x} {y} )) lb=b (true ∷ x) (false ∷ y) eq = ⊥-elim ( lb-tf {x} {y} eq ) lb=b (false ∷ x) (true ∷ y) eq = ⊥-elim ( lb-tf {y} {x} (sym eq) ) - lb=b (true ∷ x) (true ∷ y) eq = cong (λ k → true ∷ k ) (lb=b x y (lb=1 {x} {y} {true} eq)) - lb=b (false ∷ x) (false ∷ y) eq = cong (λ k → false ∷ k ) (lb=b x y (lb=1 {x} {y} {false} eq)) + lb=b (true ∷ x) (true ∷ y) eq = cong (λ k → true ∷ k ) (lb=b x y (lb=1 {x} {y} {true} eq)) + lb=b (false ∷ x) (false ∷ y) eq = cong (λ k → false ∷ k ) (lb=b x y (lb=1 {x} {y} {false} eq)) lb : (n : ℕ) → LB n lton lb zero = record { nlist = [] ; isBin = refl ; isUnique = lb05 } where lb05 : (x : List Bool) → lton x ≡ zero → [] ≡ x lb05 x eq = lb=b [] x (sym eq) - lb (suc n) with LB.nlist (lb n) | inspect LB.nlist (lb n) + lb (suc n) with LB.nlist (lb n) | inspect LB.nlist (lb n) ... | [] | record { eq = eq } = record { nlist = false ∷ [] ; isUnique = lb06 ; isBin = lb10 } where open ≡-Reasoning lb10 : lton1 (false ∷ []) ∸ 1 ≡ suc n lb10 = begin - lton (false ∷ []) ≡⟨ refl ⟩ - suc 0 ≡⟨ refl ⟩ - suc (lton []) ≡⟨ cong (λ k → suc (lton k)) (sym eq) ⟩ - suc (lton (LB.nlist (lb n))) ≡⟨ cong suc (LB.isBin (lb n) ) ⟩ - suc n ∎ + lton (false ∷ []) ≡⟨ refl ⟩ + suc 0 ≡⟨ refl ⟩ + suc (lton []) ≡⟨ cong (λ k → suc (lton k)) (sym eq) ⟩ + suc (lton (LB.nlist (lb n))) ≡⟨ cong suc (LB.isBin (lb n) ) ⟩ + suc n ∎ lb06 : (x : List Bool) → pred (lton1 x ) ≡ suc n → false ∷ [] ≡ x lb06 x eq1 = lb=b (false ∷ []) x (trans lb10 (sym eq1)) -- lton (false ∷ []) ≡ lton x ... | false ∷ t | record { eq = eq } = record { nlist = true ∷ t ; isBin = lb01 ; isUnique = lb09 } where lb01 : lton (true ∷ t) ≡ suc n lb01 = begin - lton (true ∷ t) ≡⟨ refl ⟩ - lton1 t + lton1 t ≡⟨ sym ( sucprd (2lton1>0 t) ) ⟩ - suc (pred (lton1 t + lton1 t )) ≡⟨ refl ⟩ - suc (lton (false ∷ t)) ≡⟨ cong (λ k → suc (lton k )) (sym eq) ⟩ - suc (lton (LB.nlist (lb n))) ≡⟨ cong suc (LB.isBin (lb n)) ⟩ + lton (true ∷ t) ≡⟨ refl ⟩ + lton1 t + lton1 t ≡⟨ sym ( sucprd (2lton1>0 t) ) ⟩ + suc (pred (lton1 t + lton1 t )) ≡⟨ refl ⟩ + suc (lton (false ∷ t)) ≡⟨ cong (λ k → suc (lton k )) (sym eq) ⟩ + suc (lton (LB.nlist (lb n))) ≡⟨ cong suc (LB.isBin (lb n)) ⟩ suc n ∎ where open ≡-Reasoning lb09 : (x : List Bool) → lton1 x ∸ 1 ≡ suc n → true ∷ t ≡ x lb09 x eq1 = lb=b (true ∷ t) x (trans lb01 (sym eq1) ) -- lton (true ∷ t) ≡ lton x ... | true ∷ t | record { eq = eq } = record { nlist = lb+1 (true ∷ t) ; isBin = lb02 (true ∷ t) lb03 ; isUnique = lb07 } where lb03 : lton (true ∷ t) ≡ n lb03 = begin - lton (true ∷ t) ≡⟨ cong (λ k → lton k ) (sym eq ) ⟩ - lton (LB.nlist (lb n)) ≡⟨ LB.isBin (lb n) ⟩ + lton (true ∷ t) ≡⟨ cong (λ k → lton k ) (sym eq ) ⟩ + lton (LB.nlist (lb n)) ≡⟨ LB.isBin (lb n) ⟩ n ∎ where open ≡-Reasoning add11 : (x1 : ℕ ) → suc x1 + suc x1 ≡ suc (suc (x1 + x1)) add11 zero = refl add11 (suc x) = cong (λ k → suc (suc k)) (trans (+-comm x _) (cong suc (+-comm _ x))) - lb04 : (t : List Bool) → suc (lton1 t) ≡ lton1 (lb+1 t) + lb04 : (t : List Bool) → suc (lton1 t) ≡ lton1 (lb+1 t) lb04 [] = refl lb04 (false ∷ t) = refl lb04 (true ∷ []) = refl lb04 (true ∷ t0 ) = begin - suc (suc (lton1 t0 + lton1 t0)) ≡⟨ sym (add11 (lton1 t0)) ⟩ - suc (lton1 t0) + suc (lton1 t0) ≡⟨ cong (λ k → k + k ) (lb04 t0 ) ⟩ + suc (suc (lton1 t0 + lton1 t0)) ≡⟨ sym (add11 (lton1 t0)) ⟩ + suc (lton1 t0) + suc (lton1 t0) ≡⟨ cong (λ k → k + k ) (lb04 t0 ) ⟩ lton1 (lb+1 t0) + lton1 (lb+1 t0) ∎ where open ≡-Reasoning @@ -473,7 +473,7 @@ suc n ∎ where open ≡-Reasoning lb07 : (x : List Bool) → pred (lton1 x ) ≡ suc n → lb+1 (true ∷ t) ≡ x - lb07 x eq1 = lb=b (lb+1 (true ∷ t)) x (trans ( lb02 (true ∷ t) lb03 ) (sym eq1)) + lb07 x eq1 = lb=b (lb+1 (true ∷ t)) x (trans ( lb02 (true ∷ t) lb03 ) (sym eq1)) -- Bernstein is non constructive, so we cannot use this without some assumption -- but in case of ℕ, we can construct it directly. @@ -488,8 +488,8 @@ a : A fa=c : f a ≡ c -Countable-Bernstein : (A B C : Set) → Bijection A ℕ → Bijection C ℕ - → (fi : InjectiveF A B ) → (gi : InjectiveF B C ) +Countable-Bernstein : (A B C : Set) → Bijection A ℕ → Bijection C ℕ + → (fi : InjectiveF A B ) → (gi : InjectiveF B C ) → (is-A : (c : C ) → Dec (Is A C (λ x → (InjectiveF.f gi (InjectiveF.f fi x))) c )) → (is-B : (c : C ) → Dec (Is B C (InjectiveF.f gi) c) ) → Bijection B ℕ Countable-Bernstein A B C an cn fi gi is-A is-B = record { @@ -514,8 +514,8 @@ record CB (n : ℕ) : Set where field ca cb : ℕ - cb≤n : cb ≤ suc n - ca≤cb : ca ≤ cb + cb≤n : cb ≤ suc n + ca≤cb : ca ≤ cb na : {i : ℕ} → i < ca → A nb : {i : ℕ} → i < cb → B @@ -529,49 +529,75 @@ lb : (n : ℕ ) → CB n lb zero with is-A (fun← cn zero) | is-B (fun← cn zero) - ... | yes isA | yes isB = record { ca = suc zero ; cb = suc zero ; cb≤n = ≤-refl ; ca≤cb = ≤-refl ; na = λ _ → Is.a isA ; nb = λ _ → Is.a isB } + ... | yes isA | yes isB = record { ca = suc zero ; cb = suc zero ; cb≤n = ≤-refl ; ca≤cb = ≤-refl ; na = λ _ → Is.a isA ; nb = λ _ → Is.a isB } ... | yes isA | no nisB = ⊥-elim ( ¬isA∧isB _ isA nisB ) - ... | no nisA | yes isB = record { ca = zero ; cb = suc zero ; cb≤n = ≤-refl ; ca≤cb = px≤x ; na = λ () ; nb = λ _ → Is.a isB } - ... | no nisA | no nisB = record { ca = zero ; cb = zero ; cb≤n = px≤x ; ca≤cb = ≤-refl ; na = λ () ; nb = λ () } + ... | no nisA | yes isB = record { ca = zero ; cb = suc zero ; cb≤n = ≤-refl ; ca≤cb = px≤x ; na = λ () ; nb = λ _ → Is.a isB } + ... | no nisA | no nisB = record { ca = zero ; cb = zero ; cb≤n = px≤x ; ca≤cb = ≤-refl ; na = λ () ; nb = λ () } lb (suc n) with is-A (fun← cn (suc n)) | is-B (fun← cn (suc n)) - ... | yes isA | yes isB = record { ca = suc (CB.ca (lb n)) ; cb = suc (CB.cb (lb n)) ; cb≤n = s≤s (CB.cb≤n (lb n)) ; ca≤cb = s≤s (CB.ca≤cb (lb n)) + ... | yes isA | yes isB = record { ca = suc (CB.ca (lb n)) ; cb = suc (CB.cb (lb n)) ; cb≤n = s≤s (CB.cb≤n (lb n)) ; ca≤cb = s≤s (CB.ca≤cb (lb n)) ; na = na ; nb = nb } where na : {i : ℕ} → i < suc (CB.ca (lb n)) → A na {i} i