# HG changeset patch # User Shinji KONO # Date 1668900984 -32400 # Node ID 88fae58f89f521bd6c3c7cf6cf9ad52804d71e90 # Parent ac182ad5bfd2185a55a0dc933285c5921e492d29 ... diff -r ac182ad5bfd2 -r 88fae58f89f5 src/OD.agda --- a/src/OD.agda Sat Nov 19 00:04:35 2022 +0900 +++ b/src/OD.agda Sun Nov 20 08:36:24 2022 +0900 @@ -100,7 +100,7 @@ &iso : {x : Ordinal } → & ( * x ) ≡ x ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal - sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ + sup-o≤ : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o≤ sup-o A ψ -- possible order restriction ho< : {x : HOD} → & x o< next (odmax x) @@ -302,10 +302,10 @@ Select X ψ = record { od = record { def = λ x → ( odef X x ∧ ψ ( * x )) } ; odmax = odmax X ; ( + begin + supfb x ≡⟨ ? ⟩ + MinSUP.sup (ZChain.minsup zb (OrdTrans x≤xa xa≤xb )) ≤⟨ MinSUP.minsup ? ? ? ⟩ + MinSUP.sup (ZChain.minsup za x≤xa ) ≡⟨ ? ⟩ + supfa x ∎ ) a ) where open o≤-Reasoning O + ... | tri> ¬a ¬b c = ⊥-elim ( o≤> ( + begin + supfa x ≡⟨ ? ⟩ + MinSUP.sup (ZChain.minsup za x≤xa ) ≤⟨ MinSUP.minsup ? ? ? ⟩ + MinSUP.sup (ZChain.minsup zb (OrdTrans x≤xa xa≤xb )) ≡⟨ ? ⟩ + supfb x ∎ ) c ) where open o≤-Reasoning O + UChain⊆ : ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {z y : Ordinal} (ay : odef A y) { supf supf1 : Ordinal → Ordinal } → (supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y ) @@ -831,6 +859,12 @@ ax : odef A x is-sup : IsMinSUP A B f ax + zc43 : (x sp1 : Ordinal ) → ( x o< sp1 ) ∨ ( sp1 o≤ x ) + zc43 x sp1 with trio< x sp1 + ... | tri< a ¬b ¬c = case1 a + ... | tri≈ ¬a b ¬c = case2 (o≤-refl0 (sym b)) + ... | tri> ¬a ¬b c = case2 (o<→≤ c) + -- -- create all ZChains under o< x -- @@ -931,14 +965,8 @@ -- supf0 px o≤ sp1 -- - zc43 : (x : Ordinal ) → ( x o< sp1 ) ∨ ( sp1 o≤ x ) - zc43 x with trio< x sp1 - ... | tri< a ¬b ¬c = case1 a - ... | tri≈ ¬a b ¬c = case2 (o≤-refl0 (sym b)) - ... | tri> ¬a ¬b c = case2 (o<→≤ c) - zc41 : ZChain A f mf ay x - zc41 with zc43 x + zc41 with zc43 x sp1 zc41 | (case2 sp≤x ) = record { supf = supf1 ; sup=u = ? ; asupf = ? ; supf-mono = supf1-mono ; supf-< = ? ; supfmax = ? ; minsup = ? ; supf-is-minsup = ? ; cfcs = ? } where @@ -1007,11 +1035,8 @@ -- this is a kind of maximality, so we cannot prove this without <-monotonicity -- - -- supf0 a ≡ px we cannot use previous cfcs + -- supf0 a ≡ px we cannot use previous cfcs, it is in the chain because -- supf0 a ≡ supf0 (supf0 a) ≡ supf0 px o< x - -- supf0 a o< sp1 ≡ x - -- sp1 ≡ px ≡ supf0 a o< x - -- sp1 o< px ≡ supf0 a → ⊥ -- cfcs : (mf< : <-monotonic-f A f) {a b w : Ordinal } → a o< b → b o≤ x → supf1 a o< x → FClosure A f (supf1 a) w → odef (UnionCF A f mf ay supf1 b) w @@ -1255,79 +1280,34 @@ supf1 : Ordinal → Ordinal supf1 z with trio< z x - ... | tri< a ¬b ¬c = ZChain.supf (pzc (osuc z) (ob ¬a ¬b c = spu pchain1 : HOD pchain1 = UnionCF A f mf ay supf1 x - is-max-hp : (supf : Ordinal → Ordinal) (x : Ordinal) {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay supf x) a → - b o< x → (ab : odef A b) → - HasPrev A (UnionCF A f mf ay supf x) f b → - * a < * b → odef (UnionCF A f mf ay supf x) b - is-max-hp supf x {a} {b} ua b ¬a ¬b c = ? -- ⊥-elim ( o≤> u ¬a ¬b x ¬a ¬b x ¬a ¬b x