# HG changeset patch # User Shinji KONO # Date 1679818725 -32400 # Node ID 905311ffe7ec91d4a5831761d8dc25c77c9fb77b # Parent 0a8b6bb9652c95e731f76d01512965840c3426dd ... diff -r 0a8b6bb9652c -r 905311ffe7ec src/generic-filter.agda --- a/src/generic-filter.agda Thu Mar 23 11:22:43 2023 +0900 +++ b/src/generic-filter.agda Sun Mar 26 17:18:45 2023 +0900 @@ -177,7 +177,7 @@ ---- -- Generic Filter on L ⊆ Power P from HOD's Countable Ordinal (G ⊆ Power P ≡ G i.e. ℕ → P → Set ) -- --- p 0 ≡ ∅ +-- p 0 ≡ p0 -- p (suc n) = if ∃ q ∈ M ∧ p n ⊆ q → q (by axiom of choice) ( q = * ( ctl→ n ) ) --- else p n @@ -336,49 +336,37 @@ -- -- --- in D, we have V ≠ L +-- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } +-- +-- We can define the valuation, but to use this, we need V=L, which makes things complicated. -- - -val< : {x y p : Ordinal} → odef (* x) ( & < * y , * p > ) → y o< x -val< {x} {y} {p} xyp = osucprev ( begin - osuc y ≤⟨ osucc (odef< (subst (λ k → odef (* y , * y) k) &iso (v00 _ _ ) )) ⟩ - & (* y , * y) <⟨ c<→o< (v01 _ _) ⟩ - & < * y , * p > <⟨ odef< xyp ⟩ - & (* x) ≡⟨ &iso ⟩ - x ∎ ) where - v00 : (x y : HOD) → odef (x , y) (& x) - v00 _ _ = case1 refl - v01 : (x y : HOD) → < x , y > ∋ (x , x) - v01 _ _ = case1 refl - open o≤-Reasoning O - -record valS (G : HOD) (x z : Ordinal) (val : (y : Ordinal) → y o< x → HOD): Set n where - field - y p : Ordinal - G∋p : odef G p - is-val : odef (* x) ( & < * y , * p > ) - z=valy : z ≡ & (val y (val< is-val)) - z )) → odef (* (val x)) (val y) - -valZ : (G M : HOD) → valT G (& M) -valZ G M = TransFinite0 {λ x → valT G x} pind (& M) where - pind : (x : Ordinal) → ((y : Ordinal) → y o< x → valT G y) → valT G x - pind x prev = record { val = ? ; is-val = ? } +-- val : (x : HOD) → (G : HOD) → HOD +-- val x G = TransFinite {λ x → HOD } ind (& x) where +-- ind : (x : Ordinal) → (valy : (y : Ordinal) → y o< x → HOD) → HOD +-- ind x valy = record { od = record { def = λ z → valS G x z valy } ; odmax = x ; } +-- What we nedd +-- M[G] : HOD +-- M ⊆ M[G] +-- M[G] ∋ G +-- M[G] ∋ ∪G +-- L of M ≡ L of M[G] +-- L is a countable subset of Power ω i.e. Power ω ∩ M -- -val : (x : HOD) → (G : HOD) → HOD -val x G = TransFinite {λ x → HOD } ind (& x) where - ind : (x : Ordinal) → (valy : (y : Ordinal) → y o< x → HOD) → HOD - ind x valy = record { od = record { def = λ z → valS G x z valy } ; odmax = x ;