# HG changeset patch # User Shinji KONO # Date 1680501756 -32400 # Node ID b15dd4438d504d783e9a07680e48af9f99df595a # Parent 30540f151ae0fd59a3a330d050bb7c73fc8e4de7 ... diff -r 30540f151ae0 -r b15dd4438d50 src/Tychonoff.agda --- a/src/Tychonoff.agda Sun Apr 02 12:41:06 2023 +0900 +++ b/src/Tychonoff.agda Mon Apr 03 15:02:36 2023 +0900 @@ -35,7 +35,7 @@ open import filter O open import ZProduct O open import Topology O -open import maximum-filter O +-- open import maximum-filter O open Filter open Topology @@ -176,11 +176,11 @@ -- otherwise the check requires a minute -- maxf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp) - maxf {X} 0 )) -op-cons ox oy = pair ox oy - -def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x -def-subst df refl refl = df - -p-cons : ( x y : HOD ) → def ZFPair (& ( < x , y >)) -p-cons x y = def-subst {_} {_} {ZFPair} {& (< x , y >)} (pair (& x) ( & y )) refl ( - let open ≡-Reasoning in begin - & < * (& x) , * (& y) > - ≡⟨ cong₂ (λ j k → & < j , k >) *iso *iso ⟩ - & < x , y > - ∎ ) - -op-iso : { op : Ordinal } → (q : ord-pair op ) → & < * (pi1 q) , * (pi2 q) > ≡ op -op-iso (pair ox oy) = refl - -p-iso : { x : HOD } → (p : def ZFPair (& x) ) → < π1 p , π2 p > ≡ x -p-iso {x} p = ord≡→≡ (op-iso p) - -p-pi1 : { x y : HOD } → (p : def ZFPair (& < x , y >) ) → π1 p ≡ x -p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) - -p-pi2 : { x y : HOD } → (p : def ZFPair (& < x , y >) ) → π2 p ≡ y -p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) - _⊗_ : (A B : HOD) → HOD A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) @@ -196,16 +154,6 @@ ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x ZFP⊆⊗ {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by) -⊗⊆ZFPair : {A B x : HOD} → ( A ⊗ B ) ∋ x → def ZFPair (& x) -⊗⊆ZFPair {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = aa ; x=ψz = x=ψa } ; ox = ox } = zfp01 where - zfp02 : Replace A (λ z → < z , * a >) ≡ * owner - zfp02 = subst₂ ( λ j k → j ≡ k ) *iso refl (sym (cong (*) x=ψa )) - zfp01 : def ZFPair (& x) - zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox - ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → def ZFPair k) (cong (&) zfp00) (op-cons b a ) where - zfp00 : < * b , * a > ≡ x - zfp00 = sym ( subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) x=ψb) ) - ⊗⊆ZFP : {A B x : HOD} → ( A ⊗ B ) ∋ x → odef (ZFP A B) (& x) ⊗⊆ZFP {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = ba ; x=ψz = x=ψa } ; ox = ox } = zfp01 where zfp02 : Replace A (λ z → < z , * a >) ≡ * owner @@ -228,6 +176,81 @@ ZFProj2-iso {P} {Q} {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d) +record Func (A B : HOD) : Set n where + field + func : {x : Ordinal } → odef A x → Ordinal + is-func : {x : Ordinal } → (ax : odef A x) → odef B (func ax ) + +data FuncHOD (A B : HOD) : (x : Ordinal) → Set n where + felm : (F : Func A B) → FuncHOD A B (& ( Replace' A ( λ x ax → < x , (* (Func.func F {& x} ax )) > ))) + +FuncHOD→F : {A B : HOD} {x : Ordinal} → FuncHOD A B x → Func A B +FuncHOD→F {A} {B} (felm F) = F + +FuncHOD=R : {A B : HOD} {x : Ordinal} → (fc : FuncHOD A B x) → (* x) ≡ Replace' A ( λ x ax → < x , (* (Func.func (FuncHOD→F fc) ax)) > ) +FuncHOD=R {A} {B} (felm F) = *iso + +-- +-- Set of All function from A to B +-- + +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + +Funcs : (A B : HOD) → HOD +Funcs A B = record { od = record { def = λ x → FuncHOD A B x } ; odmax = osuc (& (ZFP A B)) + ; ) + lemma4 = ab-pair az (Func.is-func F (subst (λ k → odef A k) (sym &iso) az)) + +record Injection (A B : Ordinal ) : Set n where + field + i→ : (x : Ordinal ) → odef (* A) x → Ordinal + iB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( i→ x lt ) + iiso : (x y : Ordinal ) → ( ltx : odef (* A) x ) ( lty : odef (* A) y ) → i→ x ltx ≡ i→ y lty → x ≡ y + +record OrdBijection (A B : Ordinal ) : Set n where + field + fun← : (x : Ordinal ) → odef (* A) x → Ordinal + fun→ : (x : Ordinal ) → odef (* B) x → Ordinal + funB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( fun← x lt ) + funA : (x : Ordinal ) → ( lt : odef (* B) x ) → odef (* A) ( fun→ x lt ) + fiso← : (x : Ordinal ) → ( lt : odef (* B) x ) → fun← ( fun→ x lt ) ( funA x lt ) ≡ x + fiso→ : (x : Ordinal ) → ( lt : odef (* A) x ) → fun→ ( fun← x lt ) ( funB x lt ) ≡ x + +ordbij-refl : { a b : Ordinal } → a ≡ b → OrdBijection a b +ordbij-refl {a} refl = record { + fun← = λ x _ → x + ; fun→ = λ x _ → x + ; funB = λ x lt → lt + ; funA = λ x lt → lt + ; fiso← = λ x lt → refl + ; fiso→ = λ x lt → refl + } + +ZFPsym : (A B : HOD) → OrdBijection (& (ZFP A B)) (& (ZFP B A)) +ZFPsym A B = record { + fun← = λ xy ab → & < * (zπ2 (subst (λ k → odef k xy) *iso ab)) , * (zπ1 (subst (λ k → odef k xy) *iso ab)) > + ; fun→ = λ xy ba → & < * (zπ2 (subst (λ k → odef k xy) *iso ba)) , * (zπ1 (subst (λ k → odef k xy) *iso ba)) > + ; funB = λ xy ab → subst (λ k → odef k (& + < * (zπ2 (subst (λ k → odef k xy) *iso ab)) , * (zπ1 (subst (λ k → odef k xy) *iso ab)) >)) + (sym *iso) ( ab-pair (zp2 (subst (λ k → odef k xy) *iso ab)) (zp1 (subst (λ k → odef k xy) *iso ab)) ) + ; funA = λ xy ba → subst (λ k → odef k (& + < * (zπ2 (subst (λ k → odef k xy) *iso ba)) , * (zπ1 (subst (λ k → odef k xy) *iso ba)) >)) + (sym *iso) ( ab-pair (zp2 (subst (λ k → odef k xy) *iso ba)) (zp1 (subst (λ k → odef k xy) *iso ba)) ) + ; fiso← = λ xy ba → trans (cong₂ (λ j k → & < * j , * k > ) (proj2 (zp-iso0 {A} {B} {zπ2 (subst (λ k → odef k xy) *iso ba)} {zπ1 (subst (λ k → odef k xy) *iso ba)} (lemma1 ba) )) + ? ) ( zp-iso (subst (λ k → odef k xy) *iso ba )) + ; fiso→ = λ xy ab → trans (cong₂ (λ j k → & < * j , * k > ) (proj2 (zp-iso0 ? )) (proj1 (zp-iso0 ? )) ) ( zp-iso (subst (λ k → odef k xy) *iso ab )) + } where + lemma1 : {A B : HOD} {xy : Ordinal} → (ba : odef (* (& (ZFP B A))) xy) → odef (ZFP A B) ( + & < * (zπ2 (subst (λ k → odef k xy) *iso ba)) , * (zπ1 (subst (λ k → odef k xy) *iso ba)) > ) + lemma1 {A} {B} {xy} ba = ? -- with subst (λ k → odef k xy ) *iso ba + -- ... | ab-pair ax by = ? + + ZFP∩ : {A B C : HOD} → ( ZFP (A ∩ B) C ≡ ZFP A C ∩ ZFP B C ) ∧ ( ZFP C (A ∩ B) ≡ ZFP C A ∩ ZFP C B ) proj1 (ZFP∩ {A} {B} {C} ) = ==→o≡ record { eq→ = zfp00 ; eq← = zfp01 } where zfp00 : {x : Ordinal} → ZFProduct (A ∩ B) C x → odef (ZFP A C ∩ ZFP B C) x