# HG changeset patch # User Shinji KONO # Date 1674385497 -32400 # Node ID b2ca37e81ad0b2ed90e88dd6c8d60124035f3eb3 # Parent 46dc298bdd77aa3d875d8180d5d0a5c751697497 ... diff -r 46dc298bdd77 -r b2ca37e81ad0 src/Topology.agda --- a/src/Topology.agda Sun Jan 22 10:38:52 2023 +0900 +++ b/src/Topology.agda Sun Jan 22 20:04:57 2023 +0900 @@ -1,3 +1,5 @@ +{-# OPTIONS --allow-unsolved-metas #-} + open import Level open import Ordinals module Topology {n : Level } (O : Ordinals {n}) where @@ -447,8 +449,6 @@ Compact→FIP : {L : HOD} → (top : Topology L ) → Compact top → FIP top Compact→FIP = ? --- existence of Ultra Filter - open Filter -- Ultra Filter has limit point @@ -459,19 +459,12 @@ ou : odef (OS TP) u ux : odef (* u) x v⊆P : * v ⊆ P - o⊆u : * u ⊆ * v - -record UFLP {P : HOD} (TP : Topology P) (F : Filter {Power P} {P} (λ x → x) ) - (ultra : ultra-filter F ) : Set (suc (suc n)) where - field - limit : Ordinal - P∋limit : odef P limit - is-limit : {v : Ordinal} → Neighbor TP limit v → filter F ⊆ (* v) + u⊆v : * u ⊆ * v -- -- Neighbor on x is a Filter (on Power P) -- -NeighborF : {P : HOD} (TP : Topology P) (x : Ordinal ) → Filter {Power P} {P} (λ x → x) +NeighborF : {P : HOD} (TP : Topology P) (x : Ordinal ) → Filter {Power P} {P} (λ x → x) NeighborF {P} TP x = record { filter = NF ; f⊆L = NF⊆PP ; filter1 = f1 ; filter2 = f2 } where nf00 : {v : Ordinal } → Neighbor TP x v → odef (Power P) v nf00 {v} nei y vy = Neighbor.v⊆P nei vy @@ -480,144 +473,26 @@ NF⊆PP : NF ⊆ Power P NF⊆PP = nf00 f1 : {p q : HOD} → Power P ∋ q → NF ∋ p → p ⊆ q → NF ∋ q - f1 {p} {q} Pq Np p⊆q = record { u = Neighbor.u Np ; ou = Neighbor.ou Np ; ux = Neighbor.ux Np ; v⊆P = Pq _ ; o⊆u = f11 } where + f1 {p} {q} Pq Np p⊆q = record { u = Neighbor.u Np ; ou = Neighbor.ou Np ; ux = Neighbor.ux Np ; v⊆P = Pq _ ; u⊆v = f11 } where f11 : * (Neighbor.u Np) ⊆ * (& q) - f11 {x} ux = subst (λ k → odef k x ) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso (Neighbor.o⊆u Np ux)) ) + f11 {x} ux = subst (λ k → odef k x ) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso (Neighbor.u⊆v Np ux)) ) f2 : {p q : HOD} → NF ∋ p → NF ∋ q → Power P ∋ (p ∩ q) → NF ∋ (p ∩ q) - f2 {p} {q} Np Nq Ppq = record { u = upq ; ou = ou ; ux = ux ; v⊆P = Ppq _ ; o⊆u = f20 } where + f2 {p} {q} Np Nq Ppq = record { u = upq ; ou = ou ; ux = ux ; v⊆P = Ppq _ ; u⊆v = f20 } where upq : Ordinal upq = & ( * (Neighbor.u Np) ∩ * (Neighbor.u Nq) ) ou : odef (OS TP) upq ou = o∩ TP (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou Np)) (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou Nq)) ux : odef (* upq) x - ux = subst ( λ k → odef k x ) (sym *iso) ⟪ Neighbor.ux Np , Neighbor.ux Nq ⟫ + ux = subst ( λ k → odef k x ) (sym *iso) ⟪ Neighbor.ux Np , Neighbor.ux Nq ⟫ f20 : * upq ⊆ * (& (p ∩ q)) f20 = subst₂ (λ j k → j ⊆ k ) (sym *iso) (sym *iso) ( λ {x} pq - → ⟪ subst (λ k → odef k x) *iso (Neighbor.o⊆u Np (proj1 pq)) , subst (λ k → odef k x) *iso (Neighbor.o⊆u Nq (proj2 pq)) ⟫ ) - --- FIP is UFL - --- filter Base -record FBase (P : HOD )(X : Ordinal ) (u : Ordinal) : Set n where - field - b x : Ordinal - b⊆X : * b ⊆ * X - sb : Subbase (* b) x - u⊆P : * u ⊆ P - x⊆u : * x ⊆ * u - -open import maximum-filter O + → ⟪ subst (λ k → odef k x) *iso (Neighbor.u⊆v Np (proj1 pq)) , subst (λ k → odef k x) *iso (Neighbor.u⊆v Nq (proj2 pq)) ⟫ ) CAP : (P : HOD) {p q : HOD } → Power P ∋ p → Power P ∋ q → Power P ∋ (p ∩ q) CAP P {p} {q} Pp Pq x pqx with subst (λ k → odef k x ) *iso pqx ... | ⟪ px , qx ⟫ = Pp _ (subst (λ k → odef k x) (sym *iso) px ) -UFLP→FIP : {P : HOD} (TP : Topology P) → - ((F : Filter {Power P} {P} (λ x → x) ) (UF : ultra-filter F ) → UFLP TP F UF ) → FIP TP -UFLP→FIP {P} TP uflp with trio< (& P) o∅ -... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) -... | tri≈ ¬a b ¬c = record { limit = ? ; is-limit = {!!} } where - -- P is empty - fip02 : {x : Ordinal } → ¬ odef P x - fip02 {x} Px = ⊥-elim ( o<¬≡ (sym b) (∈∅< Px) ) -... | tri> ¬a ¬b 0

; P∋limit = Pf ; is-limit = isL } where - FP : Filter {Power P} {P} (λ x → x) - FP = record { filter = Proj1 (filter F) (Power P) (Power Q) ; f⊆L = ty00 ; filter1 = ? ; filter2 = ? } where - ty00 : Proj1 (filter F) (Power P) (Power Q) ⊆ Power P - ty00 {x} ⟪ PPx , ppf ⟫ = PPx - UFP : ultra-filter FP - UFP = record { proper = ? ; ultra = ? } - uflp : UFLP TP FP UFP - uflp = FIP→UFLP TP (Compact→FIP TP CP) FP UFP - - FQ : Filter {Power Q} {Q} (λ x → x) - FQ = record { filter = Proj2 (filter F) (Power P) (Power Q) ; f⊆L = ty00 ; filter1 = ? ; filter2 = ? } where - ty00 : Proj2 (filter F) (Power P) (Power Q) ⊆ Power Q - ty00 {x} ⟪ QPx , ppf ⟫ = QPx - UFQ : ultra-filter FQ - UFQ = record { proper = ? ; ultra = ? } - uflq : UFLP TQ FQ UFQ - uflq = FIP→UFLP TQ (Compact→FIP TQ CQ) FQ UFQ - - Pf : odef (ZFP P Q) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) - Pf = ? - isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → filter F ⊆ * v - isL {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; o⊆u = o⊆u } {x} fx = ? - diff -r 46dc298bdd77 -r b2ca37e81ad0 src/Tychonoff.agda --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Tychonoff.agda Sun Jan 22 20:04:57 2023 +0900 @@ -0,0 +1,205 @@ +open import Level +open import Ordinals +module Tychonoff {n : Level } (O : Ordinals {n}) where + +open import zf +open import logic +open _∧_ +open _∨_ +open Bool + +import OD +open import Relation.Nullary +open import Data.Empty +open import Relation.Binary.Core +open import Relation.Binary.Definitions +open import Relation.Binary.PropositionalEquality +import BAlgebra +open BAlgebra O +open inOrdinal O +open OD O +open OD.OD +open ODAxiom odAxiom +import OrdUtil +import ODUtil +open Ordinals.Ordinals O +open Ordinals.IsOrdinals isOrdinal +open Ordinals.IsNext isNext +open OrdUtil O +open ODUtil O + +import ODC +open ODC O + +open import filter O +open import OPair O +open import Topology O +open import maximum-filter O + +open Filter +open Topology + +-- FIP is UFL + +-- filter Base +record FBase (P : HOD )(X : Ordinal ) (u : Ordinal) : Set n where + field + b x : Ordinal + b⊆X : * b ⊆ * X + sb : Subbase (* b) x + u⊆P : * u ⊆ P + x⊆u : * x ⊆ * u + +record UFLP {P : HOD} (TP : Topology P) (F : Filter {Power P} {P} (λ x → x) ) + (ultra : ultra-filter F ) : Set (suc (suc n)) where + field + limit : Ordinal + P∋limit : odef P limit + is-limit : {v : Ordinal} → Neighbor TP limit v → (* v) ⊆ filter F + +UFLP→FIP : {P : HOD} (TP : Topology P) → + ((F : Filter {Power P} {P} (λ x → x) ) (UF : ultra-filter F ) → UFLP TP F UF ) → FIP TP +UFLP→FIP {P} TP uflp with trio< (& P) o∅ +... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) +... | tri≈ ¬a b ¬c = record { limit = ? ; is-limit = {!!} } where + -- P is empty + fip02 : {x : Ordinal } → ¬ odef P x + fip02 {x} Px = ⊥-elim ( o<¬≡ (sym b) (∈∅< Px) ) +... | tri> ¬a ¬b 0

; P∋limit = Pf ; is-limit = isL } where + FP : Filter {Power P} {P} (λ x → x) + FP = record { filter = Proj1 (filter F) (Power P) (Power Q) ; f⊆L = ty00 ; filter1 = ? ; filter2 = ? } where + ty00 : Proj1 (filter F) (Power P) (Power Q) ⊆ Power P + ty00 {x} ⟪ PPx , ppf ⟫ = PPx + UFP : ultra-filter FP + UFP = record { proper = ? ; ultra = ? } + uflp : UFLP TP FP UFP + uflp = FIP→UFLP TP (Compact→FIP TP CP) FP UFP + + FQ : Filter {Power Q} {Q} (λ x → x) + FQ = record { filter = Proj2 (filter F) (Power P) (Power Q) ; f⊆L = ty00 ; filter1 = ? ; filter2 = ? } where + ty00 : Proj2 (filter F) (Power P) (Power Q) ⊆ Power Q + ty00 {x} ⟪ QPx , ppf ⟫ = QPx + UFQ : ultra-filter FQ + UFQ = record { proper = ? ; ultra = ? } + uflq : UFLP TQ FQ UFQ + uflq = FIP→UFLP TQ (Compact→FIP TQ CQ) FQ UFQ + + Pf : odef (ZFP P Q) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) + Pf = ? + neip : {v : Ordinal} → {p q : HOD} → Neighbor (ProductTopology TP TQ) (& < p , q >) v → Neighbor TP p ? + neip = ? + neiq : {v : Ordinal} → {p q : HOD} → Neighbor (ProductTopology TP TQ) (& < p , q >) v → Neighbor TQ q ? + neiq = ? + pq⊆F : {p q : HOD} → Neighbor TP p ? → Neighbor TP q ? → ? ⊆ filter F + pq⊆F = ? + isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → * v ⊆ filter F + isL {v} npq {x} fx = ? + + + + + +