# HG changeset patch # User Shinji KONO # Date 1561409422 -32400 # Node ID c42352a7ee077ee8bc81a4d88541e4af15664b78 # Parent 1daa1d24348c1ed89ad296383fe68271d8c031eb HOD diff -r 1daa1d24348c -r c42352a7ee07 HOD.agda --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/HOD.agda Tue Jun 25 05:50:22 2019 +0900 @@ -0,0 +1,425 @@ +open import Level +module HOD where + +open import zf +open import ordinal + +open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) +open import Relation.Binary.PropositionalEquality +open import Data.Nat.Properties +open import Data.Empty +open import Relation.Nullary +open import Relation.Binary +open import Relation.Binary.Core + +-- Ordinal Definable Set + +record HOD {n : Level} : Set (suc n) where + field + def : (x : Ordinal {n} ) → Set n + otrans : {x y : Ordinal {n} } → def x → y o< x → def y + +open HOD +open import Data.Unit + +open Ordinal + +record _==_ {n : Level} ( a b : HOD {n} ) : Set n where + field + eq→ : ∀ { x : Ordinal {n} } → def a x → def b x + eq← : ∀ { x : Ordinal {n} } → def b x → def a x + +id : {n : Level} {A : Set n} → A → A +id x = x + +eq-refl : {n : Level} { x : HOD {n} } → x == x +eq-refl {n} {x} = record { eq→ = id ; eq← = id } + +open _==_ + +eq-sym : {n : Level} { x y : HOD {n} } → x == y → y == x +eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } + +eq-trans : {n : Level} { x y z : HOD {n} } → x == y → y == z → x == z +eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } + +-- Ordinal in HOD ( and ZFSet ) +Ord : { n : Level } → ( a : Ordinal {n} ) → HOD {n} +Ord {n} a = record { def = λ y → y o< a ; otrans = lemma } where + lemma : {x y : Ordinal} → x o< a → y o< x → y o< a + lemma {x} {y} x→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) +>→¬< (s≤s x→¬< x ¬a ¬b c = ⊥-elim (¬x<0 c) + +ord-od∅ : {n : Level} → o∅ {suc n} ≡ od→ord (Ord (o∅ {suc n})) +ord-od∅ {n} with trio< {n} (o∅ {suc n}) (od→ord (Ord (o∅ {suc n}))) +ord-od∅ {n} | tri< a ¬b ¬c = ⊥-elim (lemma a) where + lemma : o∅ {suc n } o< (od→ord (Ord (o∅ {suc n}))) → ⊥ + lemma lt with o<→c< lt + lemma lt | t = o<¬≡ refl t +ord-od∅ {n} | tri≈ ¬a b ¬c = b +ord-od∅ {n} | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) + +o<→¬c> : {n : Level} → { x y : HOD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) +o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where + +o≡→¬c< : {n : Level} → { x y : HOD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y +o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) + +∅0 : {n : Level} → record { def = λ x → Lift n ⊥ ; otrans = λ () } == od∅ {n} +eq→ ∅0 {w} (lift ()) +eq← ∅0 {w} (case1 ()) +eq← ∅0 {w} (case2 ()) + +∅< : {n : Level} → { x y : HOD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} ) +∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d +∅< {n} {x} {y} d eq | lift () + +-- ∅6 : {n : Level} → { x : HOD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox +-- ∅6 {n} {x} x∋x = c<> {n} {x} {x} x∋x x∋x + +def-iso : {n : Level} {A B : HOD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x +def-iso refl t = t + +is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) +is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl +is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) +is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) + +open _∧_ + +-- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) +-- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) + +csuc : {n : Level} → HOD {suc n} → HOD {suc n} +csuc x = ord→od ( osuc ( od→ord x )) + +-- Power Set of X ( or constructible by λ y → def X (od→ord y ) + +ZFSubset : {n : Level} → (A x : HOD {suc n} ) → HOD {suc n} +ZFSubset A x = record { def = λ y → def A y ∧ def x y ; otrans = {!!} } + +Def : {n : Level} → (A : HOD {suc n}) → HOD {suc n} +Def {n} A = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) + +-- Constructible Set on α +L : {n : Level} → (α : Ordinal {suc n}) → HOD {suc n} +L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ +L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) +L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) + record { def = λ y → osuc y o< (od→ord (L {n} (record { lv = lx ; ord = Φ lx }) )) ; otrans = {!!} } + +omega : { n : Level } → Ordinal {n} +omega = record { lv = Suc Zero ; ord = Φ 1 } + +HOD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} +HOD→ZF {n} = record { + ZFSet = HOD {suc n} + ; _∋_ = _∋_ + ; _≈_ = _==_ + ; ∅ = od∅ + ; _,_ = _,_ + ; Union = Union + ; Power = Power + ; Select = Select + ; Replace = Replace + ; infinite = Ord omega + ; isZF = isZF + } where + Replace : HOD {suc n} → (HOD {suc n} → HOD {suc n} ) → HOD {suc n} + Replace X ψ = sup-od ψ + Select : (X : HOD {suc n} ) → ((x : HOD {suc n} ) → X ∋ x → Set (suc n) ) → HOD {suc n} + Select X ψ = record { def = λ x → ( (d : def X x ) → ψ (ord→od x) (subst (λ k → def X k ) (sym diso) d)) ; otrans = lemma } where + lemma : {x y : Ordinal} → ((d : def X x) → ψ (ord→od x) (subst (def X) (sym diso) d)) → + y o< x → (d : def X y) → ψ (ord→od y) (subst (def X) (sym diso) d) + lemma {x} {y} f yz : Union X ∋ z ) → csuc z ∋ z + union-lemma-u {X} {z} U>z = lemma <-osuc where + lemma : {oz ooz : Ordinal {suc n}} → oz o< ooz → def (ord→od ooz) oz + lemma {oz} {ooz} lt = def-subst {suc n} {ord→od ooz} {!!} refl refl + union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z + union→ X y u xx with trio< ( od→ord u ) ( osuc ( od→ord y )) + union→ X y u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) + union→ X y u xx | tri< a ¬b ¬c | () + union→ X y u xx | tri≈ ¬a b ¬c = lemma b (c<→o< (proj1 xx )) where + lemma : {oX ou ooy : Ordinal {suc n}} → ou ≡ ooy → ou o< oX → ooy o< oX + lemma refl lt = lt + union→ X y u xx | tri> ¬a ¬b c = ordtrans {suc n} {osuc ( od→ord y )} {od→ord u} {od→ord X} c ( c<→o< (proj1 xx )) + union← : (X z : HOD) (X∋z : Union X ∋ z) → (X ∋ csuc z) ∧ (csuc z ∋ z ) + union← X z X∋z = record { proj1 = def-subst {suc n} {_} {_} {X} {od→ord (csuc z )} {!!} oiso (sym diso) ; proj2 = union-lemma-u X∋z } + ψiso : {ψ : HOD {suc n} → Set (suc n)} {x y : HOD {suc n}} → ψ x → x ≡ y → ψ y + ψiso {ψ} t refl = t + selection : {X : HOD } {ψ : (x : HOD ) → x ∈ X → Set (suc n)} {y : HOD} → ((d : X ∋ y ) → ψ y d ) ⇔ (Select X ψ ∋ y) + selection {ψ} {X} {y} = {!!} + replacement : {ψ : HOD → HOD} (X x : HOD) → Replace X ψ ∋ ψ x + replacement {ψ} X x = sup-c< ψ {x} + ∅-iso : {x : HOD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) + ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq + minimul : (x : HOD {suc n} ) → ¬ (x == od∅ )→ HOD {suc n} + minimul x not = {!!} + regularity : (x : HOD) (not : ¬ (x == od∅)) → + (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ d → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) + proj1 (regularity x not ) = {!!} + proj2 (regularity x not ) = record { eq→ = reg ; eq← = {!!} } where + reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ d → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y + reg {y} t = {!!} + extensionality : {A B : HOD {suc n}} → ((z : HOD) → (A ∋ z) ⇔ (B ∋ z)) → A == B + eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d + eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d + xx-union : {x : HOD {suc n}} → (x , x) ≡ record { def = λ z → z o< osuc (od→ord x) } + xx-union {x} = cong ( λ k → Ord k ) (omxx (od→ord x)) + xxx-union : {x : HOD {suc n}} → (x , (x , x)) ≡ record { def = λ z → z o< osuc (osuc (od→ord x))} + xxx-union {x} = cong ( λ k → Ord k ) lemma where + lemma1 : {x : HOD {suc n}} → od→ord x o< od→ord (x , x) + lemma1 {x} = c<→o< ( proj1 (pair x x ) ) + lemma2 : {x : HOD {suc n}} → od→ord (x , x) ≡ osuc (od→ord x) + lemma2 = trans ( cong ( λ k → od→ord k ) xx-union ) {!!} + lemma : {x : HOD {suc n}} → omax (od→ord x) (od→ord (x , x)) ≡ osuc (osuc (od→ord x)) + lemma {x} = trans ( sym ( omax< (od→ord x) (od→ord (x , x)) lemma1 ) ) ( cong ( λ k → osuc k ) lemma2 ) + uxxx-union : {x : HOD {suc n}} → Union (x , (x , x)) ≡ record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } + uxxx-union {x} = cong ( λ k → record { def = λ z → osuc z o< k ; otrans = {!!} } ) lemma where + lemma : od→ord (x , (x , x)) ≡ osuc (osuc (od→ord x)) + lemma = trans ( cong ( λ k → od→ord k ) xxx-union ) {!!} + uxxx-2 : {x : HOD {suc n}} → record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } == record { def = λ z → z o< osuc (od→ord x) } + eq→ ( uxxx-2 {x} ) {m} lt = proj1 (osuc2 m (od→ord x)) lt + eq← ( uxxx-2 {x} ) {m} lt = proj2 (osuc2 m (od→ord x)) lt + uxxx-ord : {x : HOD {suc n}} → od→ord (Union (x , (x , x))) ≡ osuc (od→ord x) + uxxx-ord {x} = trans (cong (λ k → od→ord k ) uxxx-union) {!!} + infinite : HOD {suc n} + infinite = Ord omega + infinity∅ : Ord omega ∋ od∅ {suc n} + infinity∅ = {!!} + infinity : (x : HOD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) + infinity x lt = {!!} where + lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega + lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n) + lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n) + lemma record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } (case1 (s≤s ())) + lemma record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } (case1 (s≤s ())) + lemma record { lv = 1 ; ord = (Φ 1) } (case2 c2) with d<→lv c2 + lemma record { lv = (Suc Zero) ; ord = (Φ .1) } (case2 ()) | refl + -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] -- this form is no good since X is a transitive set + -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] + record Choice (z : HOD {suc n}) : Set (suc (suc n)) where + field + u : {x : HOD {suc n}} ( x∈z : x ∈ z ) → HOD {suc n} + t : {x : HOD {suc n}} ( x∈z : x ∈ z ) → (x : HOD {suc n} ) → HOD {suc n} + choice : { x : HOD {suc n} } → ( x∈z : x ∈ z ) → ( u x∈z ∩ x) == { t x∈z x } + -- choice : {x : HOD {suc n}} ( x ∈ z → ¬ ( x ≈ ∅ ) ) → + -- axiom-of-choice : { X : HOD } → ( ¬x∅ : ¬ ( X == od∅ ) ) → { A : HOD } → (A∈X : A ∈ X ) → choice ¬x∅ A∈X ∈ A + -- axiom-of-choice {X} nx {A} lt = ¬∅=→∅∈ {!!} + diff -r 1daa1d24348c -r c42352a7ee07 ordinal-definable.agda --- a/ordinal-definable.agda Thu Jun 20 13:18:18 2019 +0900 +++ b/ordinal-definable.agda Tue Jun 25 05:50:22 2019 +0900 @@ -1,3 +1,5 @@ +{-# OPTIONS --allow-unsolved-metas #-} + open import Level module ordinal-definable where @@ -17,13 +19,21 @@ record OD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n - otrans : {x y : Ordinal {n} } → def x → y o< x → def y open OD open import Data.Unit open Ordinal +-- Ordinal in OD ( and ZFSet ) +Ord : { n : Level } → ( a : Ordinal {n} ) → OD {n} +Ord {n} a = record { def = λ y → y o< a } + +-- od∅ : {n : Level} → OD {n} +-- od∅ {n} = record { def = λ _ → Lift n ⊥ } +od∅ : {n : Level} → OD {n} +od∅ {n} = Ord o∅ + record _==_ {n : Level} ( a b : OD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x @@ -43,30 +53,22 @@ eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } --- Ordinal in OD ( and ZFSet ) -Ord : { n : Level } → ( a : Ordinal {n} ) → OD {n} -Ord {n} a = record { def = λ y → y o< a ; otrans = lemma } where - lemma : {x y : Ordinal} → x o< a → y o< x → y o< a - lemma {x} {y} x : {n : Level} → { x y : OD {n} } → (x == y) → (od→ord x ) o< ( od→ord y) → ⊥ +o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with + yx (def-subst {n} {ord→od (od→ord y)} {od→ord x} (o<→c< (case1 lt )) oiso refl ) +... | oyx with o<¬≡ refl (c<→o< {n} {x} oyx ) +... | () +o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with + yx (def-subst {n} {ord→od (od→ord y)} {od→ord x} (o<→c< (case2 lt )) oiso refl ) +... | oyx with o<¬≡ refl (c<→o< {n} {x} oyx ) +... | () + +==→o≡ : {n : Level} → { x y : Ordinal {suc n} } → ord→od x == ord→od y → x ≡ y +==→o≡ {n} {x} {y} eq with trio< {n} x y +==→o≡ {n} {x} {y} eq | tri< a ¬b ¬c = ⊥-elim ( o<→o> eq (o<-subst a (sym ord-iso) (sym ord-iso ))) +==→o≡ {n} {x} {y} eq | tri≈ ¬a b ¬c = b +==→o≡ {n} {x} {y} eq | tri> ¬a ¬b c = ⊥-elim ( o<→o> (eq-sym eq) (o<-subst c (sym ord-iso) (sym ord-iso ))) + +≡-def : {n : Level} → { x : Ordinal {suc n} } → x ≡ od→ord (record { def = λ z → z o< x } ) +≡-def {n} {x} = ==→o≡ {n} (subst (λ k → ord→od x == k ) (sym oiso) lemma ) where + lemma : ord→od x == record { def = λ z → z o< x } + eq→ lemma {w} z = subst₂ (λ k j → k o< j ) diso refl (subst (λ k → (od→ord ( ord→od w)) o< k ) diso t ) where + t : (od→ord ( ord→od w)) o< (od→ord (ord→od x)) + t = c<→o< {suc n} {ord→od w} {ord→od x} (def-subst {suc n} {_} {_} {ord→od x} {_} z refl (sym diso)) + eq← lemma {w} z = def-subst {suc n} {_} {_} {ord→od x} {w} ( o<→c< {suc n} {_} {_} z ) refl refl + +od≡-def : {n : Level} → { x : Ordinal {suc n} } → ord→od x ≡ record { def = λ z → z o< x } +od≡-def {n} {x} = subst (λ k → ord→od x ≡ k ) oiso (cong ( λ k → ord→od k ) (≡-def {n} {x} )) + +==→o≡1 : {n : Level} → { x y : OD {suc n} } → x == y → od→ord x ≡ od→ord y +==→o≡1 eq = ==→o≡ (subst₂ (λ k j → k == j ) (sym oiso) (sym oiso) eq ) + +==-def-l : {n : Level } {x y : Ordinal {suc n} } { z : OD {suc n} }→ (ord→od x == ord→od y) → def z x → def z y +==-def-l {n} {x} {y} {z} eq z>x = subst ( λ k → def z k ) (==→o≡ eq) z>x + +==-def-r : {n : Level } {x y : OD {suc n} } { z : Ordinal {suc n} }→ (x == y) → def x z → def y z +==-def-r {n} {x} {y} {z} eq z>x = subst (λ k → def k z ) (subst₂ (λ j k → j ≡ k ) oiso oiso (cong (λ k → ord→od k) (==→o≡1 eq))) z>x + ∋→o< : {n : Level} → { a x : OD {suc n} } → a ∋ x → od→ord x o< od→ord a ∋→o< {n} {a} {x} lt = t where t : (od→ord x) o< (od→ord a) t = c<→o< {suc n} {x} {a} lt +o<∋→ : {n : Level} → { a x : OD {suc n} } → od→ord x o< od→ord a → a ∋ x +o<∋→ {n} {a} {x} lt = subst₂ (λ k j → def k j ) oiso refl t where + t : def (ord→od (od→ord a)) (od→ord x) + t = o<→c< {suc n} {od→ord x} {od→ord a} lt + o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n} o∅≡od∅ {n} with trio< {n} (o∅ {suc n}) (od→ord (od∅ {suc n} )) o∅≡od∅ {n} | tri< a ¬b ¬c = ⊥-elim (lemma a) where lemma : o∅ {suc n } o< (od→ord (od∅ {suc n} )) → ⊥ - lemma lt with def-subst {!!} oiso refl - lemma lt | t = {!!} + lemma lt with def-subst (o<→c< lt) oiso refl + lemma lt | case1 () + lemma lt | case2 () o∅≡od∅ {n} | tri≈ ¬a b ¬c = trans (cong (λ k → ord→od k ) b ) oiso o∅≡od∅ {n} | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) -ord-od∅ : {n : Level} → o∅ {suc n} ≡ od→ord (Ord (o∅ {suc n})) -ord-od∅ {n} with trio< {n} (o∅ {suc n}) (od→ord (Ord (o∅ {suc n}))) -ord-od∅ {n} | tri< a ¬b ¬c = ⊥-elim (lemma a) where - lemma : o∅ {suc n } o< (od→ord (Ord (o∅ {suc n}))) → ⊥ - lemma lt with o<→c< lt - lemma lt | t = o<¬≡ refl t -ord-od∅ {n} | tri≈ ¬a b ¬c = b -ord-od∅ {n} | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) +o<→¬== : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (x == y ) +o<→¬== {n} {x} {y} lt eq = o<→o> eq lt o<→¬c> : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) o<→¬c> {n} {x} {y} olt clt = o<> olt (c<→o< clt ) where o≡→¬c< : {n : Level} → { x y : OD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y -o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) +o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (orefl oeq ) (c<→o< lt) -∅0 : {n : Level} → record { def = λ x → Lift n ⊥ ; otrans = λ () } == od∅ {n} -eq→ ∅0 {w} (lift ()) -eq← ∅0 {w} (case1 ()) -eq← ∅0 {w} (case2 ()) +tri-c< : {n : Level} → Trichotomous _==_ (_c<_ {suc n}) +tri-c< {n} x y with trio< {n} (od→ord x) (od→ord y) +tri-c< {n} x y | tri< a ¬b ¬c = tri< (def-subst (o<→c< a) oiso refl) (o<→¬== a) ( o<→¬c> a ) +tri-c< {n} x y | tri≈ ¬a b ¬c = tri≈ (o≡→¬c< b) (ord→== b) (o≡→¬c< (sym b)) +tri-c< {n} x y | tri> ¬a ¬b c = tri> ( o<→¬c> c) (λ eq → o<→¬== c (eq-sym eq ) ) (def-subst (o<→c< c) oiso refl) + +c<> : {n : Level } { x y : OD {suc n}} → x c< y → y c< x → ⊥ +c<> {n} {x} {y} x {n} {x} {y} x {n} {x} {y} x b ( c<→o< x {n} {x} {y} x ¬a ¬b c = ¬a x {n} {x} {x} x∋x x∋x +∅6 : {n : Level} → { x : OD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox +∅6 {n} {x} x∋x = c<> {n} {x} {x} x∋x x∋x def-iso : {n : Level} {A B : OD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x def-iso refl t = t +is-∋ : {n : Level} → ( x y : OD {suc n} ) → Dec ( x ∋ y ) +is-∋ {n} x y with tri-c< x y +is-∋ {n} x y | tri< a ¬b ¬c = no ¬c +is-∋ {n} x y | tri≈ ¬a b ¬c = no ¬c +is-∋ {n} x y | tri> ¬a ¬b c = yes c + is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) @@ -209,6 +264,19 @@ open _∧_ +-- +-- This menas OD is Ordinal here +-- +¬∅=→∅∈ : {n : Level} → { x : OD {suc n} } → ¬ ( x == od∅ {suc n} ) → x ∋ od∅ {suc n} +¬∅=→∅∈ {n} {x} ne = def-subst (lemma (od→ord x) (subst (λ k → ¬ (k == od∅ {suc n} )) (sym oiso) ne )) oiso refl where + lemma : (ox : Ordinal {suc n}) → ¬ (ord→od ox == od∅ {suc n} ) → ord→od ox ∋ od∅ {suc n} + lemma ox ne with is-o∅ ox + lemma ox ne | yes refl with ne ( ord→== lemma1 ) where + lemma1 : od→ord (ord→od o∅) ≡ od→ord od∅ + lemma1 = cong ( λ k → od→ord k ) o∅≡od∅ + lemma o∅ ne | yes refl | () + lemma ox ne | no ¬p = subst ( λ k → def (ord→od ox) (od→ord k) ) o∅≡od∅ (o<→c< (subst (λ k → k o< ox ) (sym diso) (∅5 ¬p)) ) + -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) @@ -218,7 +286,7 @@ -- Power Set of X ( or constructible by λ y → def X (od→ord y ) ZFSubset : {n : Level} → (A x : OD {suc n} ) → OD {suc n} -ZFSubset A x = record { def = λ y → def A y ∧ def x y ; otrans = {!!} } +ZFSubset A x = record { def = λ y → def A y ∧ def x y } Def : {n : Level} → (A : OD {suc n}) → OD {suc n} Def {n} A = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) @@ -228,13 +296,10 @@ L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) - record { def = λ y → osuc y o< (od→ord (L {n} (record { lv = lx ; ord = Φ lx }) )) ; otrans = {!!} } + record { def = λ y → osuc y o< (od→ord (L {n} (record { lv = lx ; ord = Φ lx }) )) } -omega : { n : Level } → Ordinal {n} -omega = record { lv = Suc Zero ; ord = Φ 1 } - -OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} -OD→ZF {n} = record { +Ord→ZF : {n : Level} → ZF {suc (suc n)} {suc n} +Ord→ZF {n} = record { ZFSet = OD {suc n} ; _∋_ = _∋_ ; _≈_ = _==_ @@ -242,22 +307,19 @@ ; _,_ = _,_ ; Union = Union ; Power = Power - ; Select = Select + ; Select = {!!} ; Replace = Replace - ; infinite = Ord omega + ; infinite = ord→od ( record { lv = Suc Zero ; ord = Φ 1 } ) ; isZF = isZF } where Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} Replace X ψ = sup-od ψ - Select : (X : OD {suc n} ) → ((x : OD {suc n} ) → X ∋ x → Set (suc n) ) → OD {suc n} - Select X ψ = record { def = λ x → ( (d : def X x ) → ψ (ord→od x) (subst (λ k → def X k ) (sym diso) d)) ; otrans = lemma } where - lemma : {x y : Ordinal} → ((d : def X x) → ψ (ord→od x) (subst (def X) (sym diso) d)) → - y o< x → (d : def X y) → ψ (ord→od y) (subst (def X) (sym diso) d) - lemma {x} {y} f yz : Union X ∋ z ) → csuc z ∋ z union-lemma-u {X} {z} U>z = lemma <-osuc where lemma : {oz ooz : Ordinal {suc n}} → oz o< ooz → def (ord→od ooz) oz - lemma {oz} {ooz} lt = def-subst {suc n} {ord→od ooz} {!!} refl refl + lemma {oz} {ooz} lt = def-subst {suc n} {ord→od ooz} (o<→c< lt) refl refl union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X y u xx with trio< ( od→ord u ) ( osuc ( od→ord y )) union→ X y u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) @@ -348,51 +408,68 @@ lemma refl lt = lt union→ X y u xx | tri> ¬a ¬b c = ordtrans {suc n} {osuc ( od→ord y )} {od→ord u} {od→ord X} c ( c<→o< (proj1 xx )) union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ csuc z) ∧ (csuc z ∋ z ) - union← X z X∋z = record { proj1 = def-subst {suc n} {_} {_} {X} {od→ord (csuc z )} {!!} oiso (sym diso) ; proj2 = union-lemma-u X∋z } + union← X z X∋z = record { proj1 = def-subst {suc n} {_} {_} {X} {od→ord (csuc z )} (o<→c< X∋z) oiso (sym diso) ; proj2 = union-lemma-u X∋z } ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t - selection : {X : OD } {ψ : (x : OD ) → x ∈ X → Set (suc n)} {y : OD} → ((d : X ∋ y ) → ψ y d ) ⇔ (Select X ψ ∋ y) - selection {ψ} {X} {y} = {!!} + selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) + selection {ψ} {X} {y} = record { + proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } + ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } + } replacement : {ψ : OD → OD} (X x : OD) → Replace X ψ ∋ ψ x replacement {ψ} X x = sup-c< ψ {x} ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} - minimul x not = {!!} + minimul x not = od∅ regularity : (x : OD) (not : ¬ (x == od∅)) → - (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ d → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) - proj1 (regularity x not ) = {!!} - proj2 (regularity x not ) = record { eq→ = reg ; eq← = {!!} } where - reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ d → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y - reg {y} t = {!!} + (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) + proj1 (regularity x not ) = ¬∅=→∅∈ not + proj2 (regularity x not ) = record { eq→ = reg ; eq← = lemma } where + lemma : {ox : Ordinal} → def od∅ ox → def (Select (minimul x not) (λ y → (minimul x not ∋ y) ∧ (x ∋ y))) ox + lemma (case1 ()) + lemma (case2 ()) + reg : {y : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) y → def od∅ y + reg {y} t with proj1 t + ... | x∈∅ = x∈∅ extensionality : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d xx-union : {x : OD {suc n}} → (x , x) ≡ record { def = λ z → z o< osuc (od→ord x) } - xx-union {x} = cong ( λ k → Ord k ) (omxx (od→ord x)) + xx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) (omxx (od→ord x)) xxx-union : {x : OD {suc n}} → (x , (x , x)) ≡ record { def = λ z → z o< osuc (osuc (od→ord x))} - xxx-union {x} = cong ( λ k → Ord k ) lemma where + xxx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) lemma where lemma1 : {x : OD {suc n}} → od→ord x o< od→ord (x , x) lemma1 {x} = c<→o< ( proj1 (pair x x ) ) lemma2 : {x : OD {suc n}} → od→ord (x , x) ≡ osuc (od→ord x) - lemma2 = trans ( cong ( λ k → od→ord k ) xx-union ) {!!} + lemma2 = trans ( cong ( λ k → od→ord k ) xx-union ) (sym ≡-def) lemma : {x : OD {suc n}} → omax (od→ord x) (od→ord (x , x)) ≡ osuc (osuc (od→ord x)) lemma {x} = trans ( sym ( omax< (od→ord x) (od→ord (x , x)) lemma1 ) ) ( cong ( λ k → osuc k ) lemma2 ) uxxx-union : {x : OD {suc n}} → Union (x , (x , x)) ≡ record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } - uxxx-union {x} = cong ( λ k → record { def = λ z → osuc z o< k ; otrans = {!!} } ) lemma where + uxxx-union {x} = cong ( λ k → record { def = λ z → osuc z o< k } ) lemma where lemma : od→ord (x , (x , x)) ≡ osuc (osuc (od→ord x)) - lemma = trans ( cong ( λ k → od→ord k ) xxx-union ) {!!} + lemma = trans ( cong ( λ k → od→ord k ) xxx-union ) (sym ≡-def ) uxxx-2 : {x : OD {suc n}} → record { def = λ z → osuc z o< osuc (osuc (od→ord x)) } == record { def = λ z → z o< osuc (od→ord x) } eq→ ( uxxx-2 {x} ) {m} lt = proj1 (osuc2 m (od→ord x)) lt eq← ( uxxx-2 {x} ) {m} lt = proj2 (osuc2 m (od→ord x)) lt uxxx-ord : {x : OD {suc n}} → od→ord (Union (x , (x , x))) ≡ osuc (od→ord x) - uxxx-ord {x} = trans (cong (λ k → od→ord k ) uxxx-union) {!!} + uxxx-ord {x} = trans (cong (λ k → od→ord k ) uxxx-union) (==→o≡ (subst₂ (λ j k → j == k ) (sym oiso) (sym od≡-def ) uxxx-2 )) + omega = record { lv = Suc Zero ; ord = Φ 1 } infinite : OD {suc n} - infinite = Ord omega - infinity∅ : Ord omega ∋ od∅ {suc n} - infinity∅ = {!!} + infinite = ord→od ( omega ) + infinity∅ : ord→od ( omega ) ∋ od∅ {suc n} + infinity∅ = def-subst {suc n} {_} {o∅} {infinite} {od→ord od∅} + (o<→c< ( case1 (s≤s z≤n ))) refl (subst ( λ k → ( k ≡ od→ord od∅ )) diso (cong (λ k → od→ord k) o∅≡od∅ )) + infinite∋x : (x : OD) → infinite ∋ x → od→ord x o< omega + infinite∋x x lt = subst (λ k → od→ord x o< k ) diso t where + t : od→ord x o< od→ord (ord→od (omega)) + t = ∋→o< {n} {infinite} {x} lt + infinite∋uxxx : (x : OD) → osuc (od→ord x) o< omega → infinite ∋ Union (x , (x , x )) + infinite∋uxxx x lt = o<∋→ t where + t : od→ord (Union (x , (x , x))) o< od→ord (ord→od (omega)) + t = subst (λ k → od→ord (Union (x , (x , x))) o< k ) (sym diso ) ( subst ( λ k → k o< omega ) ( sym (uxxx-ord {x} ) ) lt ) infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) - infinity x lt = {!!} where + infinity x lt = infinite∋uxxx x ( lemma (od→ord x) (infinite∋x x lt )) where lemma : (ox : Ordinal {suc n} ) → ox o< omega → osuc ox o< omega lemma record { lv = Zero ; ord = (Φ .0) } (case1 (s≤s x)) = case1 (s≤s z≤n) lemma record { lv = Zero ; ord = (OSuc .0 ord₁) } (case1 (s≤s x)) = case1 (s≤s z≤n) @@ -400,14 +477,4 @@ lemma record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } (case1 (s≤s ())) lemma record { lv = 1 ; ord = (Φ 1) } (case2 c2) with d<→lv c2 lemma record { lv = (Suc Zero) ; ord = (Φ .1) } (case2 ()) | refl - -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] -- this form is no good since X is a transitive set - -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] - record Choice (z : OD {suc n}) : Set (suc (suc n)) where - field - u : {x : OD {suc n}} ( x∈z : x ∈ z ) → OD {suc n} - t : {x : OD {suc n}} ( x∈z : x ∈ z ) → (x : OD {suc n} ) → OD {suc n} - choice : { x : OD {suc n} } → ( x∈z : x ∈ z ) → ( u x∈z ∩ x) == { t x∈z x } - -- choice : {x : OD {suc n}} ( x ∈ z → ¬ ( x ≈ ∅ ) ) → - -- axiom-of-choice : { X : OD } → ( ¬x∅ : ¬ ( X == od∅ ) ) → { A : OD } → (A∈X : A ∈ X ) → choice ¬x∅ A∈X ∈ A - -- axiom-of-choice {X} nx {A} lt = ¬∅=→∅∈ {!!}