# HG changeset patch # User Shinji KONO # Date 1673237370 -32400 # Node ID d122d0c1b0943d07087ed466d3068d4209c40683 # Parent 256a3ba634f6925850da3a9701d0cc3bf5fcc6fb ... diff -r 256a3ba634f6 -r d122d0c1b094 src/BAlgbra.agda --- a/src/BAlgbra.agda Wed Jan 04 11:21:55 2023 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,145 +0,0 @@ -open import Level -open import Ordinals -module BAlgbra {n : Level } (O : Ordinals {n}) where - -open import zf -open import logic -import OrdUtil -import OD -import ODUtil -import ODC - -open import Relation.Nullary -open import Relation.Binary -open import Data.Empty -open import Relation.Binary -open import Relation.Binary.Core -open import Relation.Binary.PropositionalEquality -open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ; _+_ to _n+_ ) - -open inOrdinal O -open Ordinals.Ordinals O -open Ordinals.IsOrdinals isOrdinal -open Ordinals.IsNext isNext -open OrdUtil O -open ODUtil O - -open OD O -open OD.OD -open ODAxiom odAxiom -open HOD - -open _∧_ -open _∨_ -open Bool - ---_∩_ : ( A B : HOD ) → HOD ---A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; --- odmax = omin (odmax A) (odmax B) ; ; P∋limit = ? ; is-limit = ? } where + → UFLP (TP Top⊗ TQ) LPQ F {!!} + uflp {L} LPQ F LF = record { limit = & < * ( UFLP.limit uflpp) , {!!} > ; P∋limit = {!!} ; is-limit = {!!} } where LP : (L : HOD ) (LPQ : L ⊆ Power (ZFP P Q)) → HOD LP L LPQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ1 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) LPP : (L : HOD) (LPQ : L ⊆ Power (ZFP P Q)) → LP L LPQ ⊆ Power P @@ -340,15 +349,13 @@ tp03 : odef (* z) z1 → odef (* (& (* z))) (& (* z1)) tp03 lt = subst (λ k → odef k (& (* z1))) (sym *iso) (subst (odef (* z)) (sym &iso) lt) FP : Filter (LPP L LPQ) - FP = record { filter = LP (filter F) (λ x → LPQ (f⊆L F x )) ; f⊆L = tp04 ; filter1 = ? ; filter2 = ? } where + FP = record { filter = LP (filter F) (λ x → LPQ (f⊆L F x )) ; f⊆L = tp04 ; filter1 = {!!} ; filter2 = {!!} } where tp04 : LP (filter F) (λ x → LPQ (f⊆L F x )) ⊆ LP L LPQ - tp04 record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = f⊆L F az ; x=ψz = ? } - uFP : ultra-filter FP - uFP = record { proper = ? ; ultra = ? } - uflpp : UFLP {P} TP {LP L LPQ} (LPP L LPQ) FP ? uFP - uflpp = FIP→UFLP TP (Compact→FIP TP CP) (LPP L LPQ) FP ? uFP + tp04 record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = f⊆L F az ; x=ψz = {!!} } + uflpp : UFLP {P} TP {LP L LPQ} (LPP L LPQ) FP {!!} + uflpp = FIP→UFLP TP (Compact→FIP TP CP) (LPP L LPQ) FP {!!} LQ : HOD LQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ2 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) LQQ : LQ ⊆ Power Q - LQQ = ? - + LQQ = {!!} +-- S ⊆ ℕ diff -r 256a3ba634f6 -r d122d0c1b094 src/VL.agda --- a/src/VL.agda Wed Jan 04 11:21:55 2023 +0900 +++ b/src/VL.agda Mon Jan 09 13:09:30 2023 +0900 @@ -12,8 +12,8 @@ open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) -import BAlgbra -open BAlgbra O +import BAlgebra +open BAlgebra O open inOrdinal O import OrdUtil import ODUtil diff -r 256a3ba634f6 -r d122d0c1b094 src/cardinal.agda --- a/src/cardinal.agda Wed Jan 04 11:21:55 2023 +0900 +++ b/src/cardinal.agda Mon Jan 09 13:09:30 2023 +0900 @@ -60,7 +60,7 @@ iB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( i→ x lt ) iiso : (x y : Ordinal ) → ( ltx : odef (* A) x ) ( lty : odef (* A) y ) → i→ x ltx ≡ i→ y lty → x ≡ y -record Bijection (A B : Ordinal ) : Set n where +record OrdBijection (A B : Ordinal ) : Set n where field fun← : (x : Ordinal ) → odef (* A) x → Ordinal fun→ : (x : Ordinal ) → odef (* B) x → Ordinal @@ -69,8 +69,18 @@ fiso← : (x : Ordinal ) → ( lt : odef (* B) x ) → fun← ( fun→ x lt ) ( funA x lt ) ≡ x fiso→ : (x : Ordinal ) → ( lt : odef (* A) x ) → fun→ ( fun← x lt ) ( funB x lt ) ≡ x +ordbij-refl : { a b : Ordinal } → a ≡ b → OrdBijection a b +ordbij-refl {a} refl = record { + fun← = λ x _ → x + ; fun→ = λ x _ → x + ; funB = λ x lt → lt + ; funA = λ x lt → lt + ; fiso← = λ x lt → refl + ; fiso→ = λ x lt → refl + } + open Injection -open Bijection +open OrdBijection record IsImage (a b : Ordinal) (iab : Injection a b ) (x : Ordinal ) : Set n where field @@ -84,7 +94,7 @@ image=a = ? _=c=_ : ( A B : HOD ) → Set n -A =c= B = Bijection ( & A ) ( & B ) +A =c= B = OrdBijection ( & A ) ( & B ) c=→≡ : {A B : HOD} → A =c= B → (A ≡ ?) ∧ (B ≡ ?) c=→≡ = ? @@ -92,24 +102,51 @@ ≡→c= : {A B : HOD} → A ≡ B → A =c= B ≡→c= = ? -Bernstein : {a b : Ordinal } → Injection a b → Injection b a → Bijection a b -Bernstein {a} {b} iab iba = {!!} where +open import BAlgebra O + +_-_ : (a b : Ordinal ) → Ordinal +a - b = & ( (* a) \ (* b) ) + +-→< : (a b : Ordinal ) → (a - b) o≤ a +-→< a b = ? + +Bernstein1 : {a b : Ordinal } → a o< b → Injection a b ∧ Injection b a → Injection (b - a) b ∧ Injection b (b - a) +Bernstein1 = ? + +Bernstein : {a b : Ordinal } → Injection a b → Injection b a → OrdBijection a b +Bernstein {a} {b} iab iba = be00 where a⊆b : * a ⊆ * b - a⊆b ax = subst (λ k → odef (* b) k) ? ( iB iab _ ax ) + a⊆b {x} ax = subst (λ k → odef (* b) k) be01 ( iB iab _ ax ) where + be01 : i→ iab x ax ≡ x + be01 = ? + be02 : x ≡ i→ iba x ? + be02 = iiso iab ? ? ax ( iB iba _ ? ) ? b⊆a : * b ⊆ * a b⊆a bx = ? + be05 : {a b : Ordinal } → a o< b → Injection a b → Injection b a → ⊥ + be05 {a} {b} a ¬a ¬b c = ⊥-elim ( be05 c iba iab ) _c<_ : ( A B : HOD ) → Set n A c< B = ¬ ( Injection (& A) (& B) ) Card : OD -Card = record { def = λ x → (a : Ordinal) → a o< x → ¬ Bijection a x } +Card = record { def = λ x → (a : Ordinal) → a o< x → ¬ OrdBijection a x } record Cardinal (a : Ordinal ) : Set (suc n) where field card : Ordinal - ciso : Bijection a card - cmax : (x : Ordinal) → card o< x → ¬ Bijection a x + ciso : OrdBijection a card + cmax : (x : Ordinal) → card o< x → ¬ OrdBijection a x Cardinal∈ : { s : HOD } → { t : Ordinal } → Ord t ∋ s → s c< Ord t Cardinal∈ = {!!} diff -r 256a3ba634f6 -r d122d0c1b094 src/filter.agda --- a/src/filter.agda Wed Jan 04 11:21:55 2023 +0900 +++ b/src/filter.agda Mon Jan 09 13:09:30 2023 +0900 @@ -12,9 +12,9 @@ open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality -import BAlgbra +import BAlgebra -open BAlgbra O +open BAlgebra O open inOrdinal O open OD O @@ -38,7 +38,7 @@ open Bool -- Kunen p.76 and p.53, we use ⊆ -record Filter { L P : HOD } (LP : L ⊆ Power P) : Set (suc n) where +record Filter { L P : HOD } (LP : L ⊆ Power P) : Set (suc n) where field filter : HOD f⊆L : filter ⊆ L @@ -47,20 +47,20 @@ open Filter -record prime-filter { L P : HOD } {LP : L ⊆ Power P} (F : Filter LP) : Set (suc (suc n)) where +record prime-filter { L P : HOD } {LP : L ⊆ Power P} (F : Filter {L} {P} LP) : Set (suc (suc n)) where field proper : ¬ (filter F ∋ od∅) prime : {p q : HOD } → L ∋ p → L ∋ q → L ∋ (p ∪ q) → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) -record ultra-filter { L P : HOD } {LP : L ⊆ Power P} (F : Filter LP) : Set (suc (suc n)) where +record ultra-filter { L P : HOD } {LP : L ⊆ Power P} (F : Filter {L} {P} LP) : Set (suc (suc n)) where field proper : ¬ (filter F ∋ od∅) ultra : {p : HOD } → L ∋ p → L ∋ ( P \ p) → ( filter F ∋ p ) ∨ ( filter F ∋ ( P \ p) ) -∈-filter : {L P p : HOD} → {LP : L ⊆ Power P} → (F : Filter LP ) → filter F ∋ p → L ∋ p +∈-filter : {L P p : HOD} → {LP : L ⊆ Power P} → (F : Filter {L} {P} LP ) → filter F ∋ p → L ∋ p ∈-filter {L} {p} {LP} F lt = ( f⊆L F) lt -⊆-filter : {L P p q : HOD } → {LP : L ⊆ Power P } → (F : Filter LP) → L ∋ q → q ⊆ P +⊆-filter : {L P p q : HOD } → {LP : L ⊆ Power P } → (F : Filter {L} {P} LP) → L ∋ q → q ⊆ P ⊆-filter {L} {P} {p} {q} {LP} F lt = power→⊆ P q ( LP lt ) ∪-lemma1 : {L p q : HOD } → (p ∪ q) ⊆ L → p ⊆ L @@ -82,7 +82,7 @@ filter-lemma1 : {P L : HOD} → (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ (P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q )) - → (F : Filter LP) → ultra-filter F → prime-filter F + → (F : Filter {L} {P} LP) → ultra-filter F → prime-filter F filter-lemma1 {P} {L} LP NG IN F u = record { proper = ultra-filter.proper u ; prime = lemma3 @@ -106,16 +106,16 @@ lemma7 : filter F ∋ (q ∩ (P \ p)) lemma7 = subst (λ k → filter F ∋ k ) (==→o≡ lemma5 ) lemma6 lemma8 : (q ∩ (P \ p)) ⊆ q - lemma8 = q∩q⊆q + lemma8 lt = proj1 lt ----- -- --- if Filter contains L, prime filter is ultra +-- if Filter {L} {P} contains L, prime filter is ultra -- filter-lemma2 : {P L : HOD} → (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) - → (F : Filter LP) → filter F ∋ P → prime-filter F → ultra-filter F + → (F : Filter {L} {P} LP) → filter F ∋ P → prime-filter F → ultra-filter F filter-lemma2 {P} {L} LP Lm F f∋P prime = record { proper = prime-filter.proper prime ; ultra = λ {p} L∋p _ → prime-filter.prime prime L∋p (Lm L∋p) (lemma10 L∋p ((f⊆L F) f∋P) ) (lemma p (p⊆L L∋p )) @@ -139,7 +139,7 @@ -- if there is a filter , there is a ultra filter under the axiom of choise -- Zorn Lemma --- filter→ultra : {P L : HOD} → (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → (F : Filter LP) → ultra-filter F +-- filter→ultra : {P L : HOD} → (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → (F : Filter {L} {P} LP) → ultra-filter F -- filter→ultra {P} {L} LP Lm F = {!!} record Dense {L P : HOD } (LP : L ⊆ Power P) : Set (suc n) where @@ -159,25 +159,25 @@ open Ideal -proper-ideal : {L P : HOD} → (LP : L ⊆ Power P) → (P : Ideal LP ) → {p : HOD} → Set n +proper-ideal : {L P : HOD} → (LP : L ⊆ Power P) → (P : Ideal {L} {P} LP ) → {p : HOD} → Set n proper-ideal {L} {P} LP I = ideal I ∋ od∅ -prime-ideal : {L P : HOD} → (LP : L ⊆ Power P) → Ideal LP → ∀ {p q : HOD } → Set n +prime-ideal : {L P : HOD} → (LP : L ⊆ Power P) → Ideal {L} {P} LP → ∀ {p q : HOD } → Set n prime-ideal {L} {P} LP I {p} {q} = ideal I ∋ ( p ∩ q) → ( ideal I ∋ p ) ∨ ( ideal I ∋ q ) record GenericFilter {L P : HOD} (LP : L ⊆ Power P) (M : HOD) : Set (suc n) where field - genf : Filter LP - generic : (D : Dense LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ Filter.filter genf ) ≡ od∅ ) + genf : Filter {L} {P} LP + generic : (D : Dense {L} {P} LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ Filter.filter genf ) ≡ od∅ ) record MaximumFilter {L P : HOD} (LP : L ⊆ Power P) : Set (suc n) where field - mf : Filter LP + mf : Filter {L} {P} LP proper : ¬ (filter mf ∋ od∅) - is-maximum : ( f : Filter LP ) → ¬ (filter f ∋ od∅) → ¬ filter mf ≡ filter f → ¬ ( filter mf ⊆ filter f ) + is-maximum : ( f : Filter {L} {P} LP ) → ¬ (filter f ∋ od∅) → ¬ ( filter mf ⊂ filter f ) -max→ultra : {L P : HOD} (LP : L ⊆ Power P) → (mx : MaximumFilter LP ) → ultra-filter ( MaximumFilter.mf mx ) +max→ultra : {L P : HOD} (LP : L ⊆ Power P) → (mx : MaximumFilter {L} {P} LP ) → ultra-filter ( MaximumFilter.mf mx ) max→ultra {L} {P} LP mx = record { proper = MaximumFilter.proper mx ; ultra = ultra } where mf = MaximumFilter.mf mx ultra : {p : HOD} → L ∋ p → L ∋ (P \ p) → (filter mf ∋ p) ∨ (filter mf ∋ (P \ p)) @@ -185,39 +185,61 @@ ... | yes y = case1 y ... | no np with ∋-p (filter mf) (P \ p) ... | yes y = case2 y - ... | no n-p = ⊥-elim (MaximumFilter.is-maximum mx FisFilter FisProper {!!} ? ) where - Y : (y : Ordinal) → (my : odef (filter mf) y ) → HOD - Y y my = record { od = record { def = λ x → (x ≡ y) ∨ (x ≡ & p) } ; odmax = & L ;