# HG changeset patch # User Shinji KONO # Date 1647320960 -32400 # Node ID e5f0ac638c015edaa774e70f76d345fe41410990 # Parent 76aba34438f2b9c3ecaa8be7eef174c3b673e095 P should be an order structure not Power Ser definition of dense is wrong diff -r 76aba34438f2 -r e5f0ac638c01 src/generic-filter.agda --- a/src/generic-filter.agda Mon Mar 14 23:37:18 2022 +0900 +++ b/src/generic-filter.agda Tue Mar 15 14:09:20 2022 +0900 @@ -54,15 +54,14 @@ import OPair open OPair O -record CountableModel (P : HOD) : Set (suc (suc n)) where +record CountableModel : Set (suc (suc n)) where field ctl-M : Ordinal ctl→ : Nat → Ordinal - ctl← : (x : Ordinal )→ x o< ctl-M → Nat - ctl ¬a ¬b c = ⊥-elim ( nat-≤> n≤m c ) -P-GenericFilter : (P p0 : HOD ) → Power P ∋ p0 → (C : CountableModel P) → GenericFilter P +P-GenericFilter : (P p0 : HOD ) → Power P ∋ p0 → (C : CountableModel ) → GenericFilter P P-GenericFilter P p0 Pp0 C = record { genf = record { filter = PDHOD P p0 C ; f⊆PL = f⊆PL ; filter1 = f1 ; filter2 = f2 } ; generic = fdense @@ -208,12 +207,12 @@ p⊆r : p ⊆ r incompatible : ∀ ( s : HOD ) → s ⊆ P → (¬ ( q ⊆ s )) ∨ (¬ ( r ⊆ s )) -lemma725 : (P p : HOD ) (C : CountableModel P) - → (pp0 : Power P ∋ p ) +lemma725 : (P p : HOD ) (C : CountableModel ) + → (PP∋p : Power P ∋ p ) → * (ctl-M C) ∋ (Power P ∩ * (ctl-M C)) -- M is a Model of ZF - → * (ctl-M C) ∋ ( (Power P ∩ * (ctl-M C)) \ filter ( genf ( P-GenericFilter P p pp0 C)) ) -- M ∋ G and M is a Model of ZF + → * (ctl-M C) ∋ ( (Power P ∩ * (ctl-M C)) \ filter ( genf ( P-GenericFilter P p PP∋p C)) ) -- M ∋ G and M is a Model of ZF → ((p : HOD) → (PP∋p : p ⊆ P ) → Incompatible P p PP∋p ) - → ¬ ( * (ctl-M C) ∋ filter ( genf ( P-GenericFilter P p pp0 C ))) + → ¬ ( * (ctl-M C) ∋ filter ( genf ( P-GenericFilter P p PP∋p C ))) lemma725 P p C PP∋p M∋PM M∋D I M∋G = D∩G≠∅ D∩G=∅ where G = filter ( genf ( P-GenericFilter P p PP∋p C )) M = * (ctl-M C) @@ -222,25 +221,25 @@ p⊆P : p ⊆ P p⊆P = ODC.power→⊆ O _ _ PP∋p df : {x : HOD} → x ⊆ P → HOD - df {x} PP∋x with Incompatible.incompatible (I x PP∋x) x PP∋x - ... | case1 q = Incompatible.q (I x PP∋x) - ... | case2 r = Incompatible.r (I x PP∋x) - df¬⊆ : {x : HOD} → (lt : x ⊆ P) → ¬ ( df lt ⊆ x ) - df¬⊆ {x} PP∋x with Incompatible.incompatible (I x PP∋x) x PP∋x - ... | case1 q = q - ... | case2 r = r + df {x} PP∋x with ODC.∋-p O G ( Incompatible.r (I x PP∋x) ) + ... | yes y = Incompatible.q (I x PP∋x) + ... | no n = Incompatible.r (I x PP∋x) df¬⊆P : {x : HOD} → (lt : x ⊆ P) → df lt ⊆ P - df¬⊆P {x} PP∋x with Incompatible.incompatible (I x PP∋x) x PP∋x - ... | case1 q = Incompatible.PP∋q (I x PP∋x) - ... | case2 r = Incompatible.PP∋r (I x PP∋x) + df¬⊆P {x} PP∋x with ODC.∋-p O G ( Incompatible.r (I x PP∋x) ) + ... | yes _ = Incompatible.PP∋q (I x PP∋x) + ... | no _ = Incompatible.PP∋r (I x PP∋x) ¬G∋df : {x : HOD} → (lt : x ⊆ P) → ¬ G ∋ (df lt ) - ¬G∋df {x} lt g = {!!} + ¬G∋df {x} lt with ODC.∋-p O G ( Incompatible.r (I x lt ) ) + ... | no n = n + ... | yes y with Incompatible.incompatible (I x lt ) (Incompatible.q (I x lt )) (Incompatible.PP∋q (I x lt )) + ... | case1 ¬q⊆pn = λ _ → ¬q⊆pn refl-⊆ + ... | case2 ¬r⊆pn = {!!} df-d : {x : HOD} → (lt : x ⊆ P) → D ∋ df lt df-d {x} lt = ⟪ power← P _ (incl (df¬⊆P lt)) , ¬G∋df lt ⟫ df-p : {x : HOD} → (lt : x ⊆ P) → x ⊆ df lt - df-p {x} lt with Incompatible.incompatible (I x lt) x lt - ... | case1 q = Incompatible.p⊆q (I x lt) - ... | case2 r = Incompatible.p⊆r (I x lt) + df-p {x} lt with ODC.∋-p O G ( Incompatible.r (I x lt) ) + ... | yes _ = Incompatible.p⊆q (I x lt) + ... | no _ = Incompatible.p⊆r (I x lt) D-Dense : Dense P D-Dense = record { dense = D @@ -264,7 +263,7 @@ lemma725-1 : (p : HOD) → (PP∋p : p ⊆ HODω2 ) → Incompatible HODω2 p PP∋p lemma725-1 = {!!} -lemma726 : (C : CountableModel HODω2) +lemma726 : (C : CountableModel ) → Union ( Replace' (Power HODω2) (λ p lt → filter ( genf ( P-GenericFilter HODω2 p lt C )))) =h= ω→2 -- HODω2 ∋ p lemma726 = {!!}