# HG changeset patch # User Shinji KONO # Date 1591957274 -32400 # Node ID ef93c56ad3115a1ecb36197dde0848d6a4b4cd67 # Parent 359402cc6c3dcff2ba777c00165cd6cf157485a8# Parent 5de8905a5a2b83d3a4a364fca1d881e450135cec ... diff -r 359402cc6c3d -r ef93c56ad311 LEMC.agda --- a/LEMC.agda Fri Jun 12 19:19:16 2020 +0900 +++ b/LEMC.agda Fri Jun 12 19:21:14 2020 +0900 @@ -32,12 +32,6 @@ open choiced -double-neg-eilm : {A : Set (suc n)} → ¬ ¬ A → A -- we don't have this in intutionistic logic -double-neg-eilm {A} notnot with p∨¬p A -- assuming axiom of choice -... | case1 p = p -... | case2 ¬p = ⊥-elim ( notnot ¬p ) - - OD→ZFC : ZFC OD→ZFC = record { ZFSet = OD diff -r 359402cc6c3d -r ef93c56ad311 OD.agda --- a/OD.agda Fri Jun 12 19:19:16 2020 +0900 +++ b/OD.agda Fri Jun 12 19:21:14 2020 +0900 @@ -256,7 +256,7 @@ ; infinite = infinite ; isZF = isZF } where - ZFSet = OD + ZFSet = OD -- is less than Ords because of maxod Select : (X : OD ) → ((x : OD ) → Set n ) → OD Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } Replace : OD → (OD → OD ) → OD @@ -270,7 +270,7 @@ Power : OD → OD Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) -- {_} : ZFSet → ZFSet - -- { x } = ( x , x ) + -- { x } = ( x , x ) -- it works but we don't use data infinite-d : ( x : Ordinal ) → Set n where iφ : infinite-d o∅ diff -r 359402cc6c3d -r ef93c56ad311 filter.agda