# HG changeset patch # User Shinji KONO # Date 1593854297 -32400 # Node ID fbabb20f222ef021d811d5f5499ce44a93fe28b1 # Parent e228e96965f0930d72f4f92ebe10a172dfc13b37 ... diff -r e228e96965f0 -r fbabb20f222e OD.agda --- a/OD.agda Sat Jul 04 12:53:40 2020 +0900 +++ b/OD.agda Sat Jul 04 18:18:17 2020 +0900 @@ -132,6 +132,7 @@ lemma2 : {y : Ordinal} → odef (Ord (od→ord x)) y → odef x y lemma2 {y} lt = subst (λ k → odef k y ) oiso (o<→c< {y} {od→ord x} lt ) + _∋_ : ( a x : HOD ) → Set n _∋_ a x = odef a ( od→ord x ) @@ -240,6 +241,9 @@ ; proj2 = λ x⊆A lt → record { proj1 = incl x⊆A lt ; proj2 = lt } } +od⊆→o≤ : {x y : HOD } → x ⊆ y → od→ord x o< osuc (od→ord y) +od⊆→o≤ {x} {y} lt = ⊆→o≤ {x} {y} (λ {z} x>z → subst (λ k → def (od y) k ) diso (incl lt (subst (λ k → def (od x) k ) (sym diso) x>z ))) + power< : {A x : HOD } → x ⊆ A → Ord (osuc (od→ord A)) ∋ x power< {A} {x} x⊆A = ⊆→o≤ (λ {y} x∋y → subst (λ k → def (od A) k) diso (lemma y x∋y ) ) where lemma : (y : Ordinal) → def (od x) y → def (od A) (od→ord (ord→od y)) @@ -247,7 +251,7 @@ open import Data.Unit -ε-induction : { ψ : HOD → Set (suc n)} +ε-induction : { ψ : HOD → Set n} → ( {x : HOD } → ({ y : HOD } → x ∋ y → ψ y ) → ψ x ) → (x : HOD ) → ψ x ε-induction {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (osuc (od→ord x)) <-osuc ) where @@ -315,20 +319,24 @@ isuc : {x : Ordinal } → infinite-d x → infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) - is-ω : (x : Ordinal) → Dec (infinite-d x ) - is-ω x = {!!} - infinite : HOD - infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ;