# HG changeset patch # User Shinji KONO # Date 1655772312 -32400 # Node ID fd7dc627748079675d0b4412f85b522cb15c7dbf # Parent 6cd4a483122c8fc7eddf026b307c14298656e522 ... diff -r 6cd4a483122c -r fd7dc6277480 src/zorn.agda --- a/src/zorn.agda Tue Jun 21 08:46:26 2022 +0900 +++ b/src/zorn.agda Tue Jun 21 09:45:12 2022 +0900 @@ -246,6 +246,7 @@ is-max : {a b : Ordinal } → (ca : odef chain a ) → b o< osuc z → (ab : odef A b) → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b + pmono : (x : Ordinal ) → x o≤ z → supf x ⊆' supf z record Maximal ( A : HOD ) : Set (Level.suc n) where field @@ -393,7 +394,7 @@ init-chain : {y x : Ordinal} → (ay : odef A y) (f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → x o< osuc y → ZChain A y f x init-chain {y} {x} ay f mf x≤y = record { chain⊆A = λ fx → A∋fc y f mf fx ; f-next = λ {x} sx → fsuc x sx ; supf = λ _ → ys ay f mf - ; initial = {!!} ; chain∋x = init ay ; is-max = is-max } where + ; initial = {!!} ; chain∋x = init ay ; is-max = is-max ; pmono = {!!} } where i-total : IsTotalOrderSet (ys ay f mf ) i-total fa fb = subst₂ (λ a b → Tri (a < b) (a ≡ b) (b < a ) ) *iso *iso (fcn-cmp y f mf fa fb) is-max : {a b : Ordinal} → odef (ys ay f mf) a → @@ -404,42 +405,47 @@ initial {i} (init ai) = case1 refl initial .{f x} (fsuc x lt) = {!!} + record ZChain0 ( A : HOD ) : Set (Level.suc n) where + field + chain : HOD + chain⊆A : chain ⊆' A + sind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) - → ((z : Ordinal) → z o< x → HOD ) → HOD + → ((z : Ordinal) → z o< x → ZChain0 A ) → ZChain0 A sind f mf {y} ay x prev with Oprev-p x ... | yes op = sc4 where px = Oprev.oprev op - sc : HOD + sc : ZChain0 A sc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) - sc4 : HOD + sc4 : ZChain0 A sc4 with ODC.∋-p O A (* x) - ... | no noax = {!!} - ... | yes ax with ODC.p∨¬p O ( HasPrev A sc ax f ) + ... | no noax = sc + ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain0.chain sc) ax f ) ... | case1 pr = sc - ... | case2 ¬fy ¬a ¬b y ¬a ¬b y ¬a ¬b c = ⊥-elim (¬a b ¬a ¬b y ¬a ¬b y ¬a ¬b₁ c = ⊥-elim ( osuc-< w≤x c ) - ... | tri≈ ¬a z=x ¬c | tri< w ¬a₁ ¬b c = ⊥-elim ( osuc-< w≤x c ) -- o<> c ( ord≤< w≤x )) -- z≡w x o< w - ... | tri> ¬a ¬b c | t = ⊥-elim ( osuc-< w≤x (ord≤< c z≤w ) ) -- x o< z → x o< w + u-mono : {z : Ordinal} → z o≤ x → supf0 z ⊆' supf0 x + u-mono {z} z≤x {i} with trio< z x + ... | tri< a ¬b ¬c = {!!} -- λ lt → lt -- record { u = z ; u ¬a ¬b c = {!!} -- λ lt → lt SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ya : odef A y) → ZChain A y f (& A) SZ f mf {y} ay = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) (& A) @@ -691,7 +687,7 @@ SZ1 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} → (ay : odef A y) → (z : Ordinal) → ZChain1 ( λ y → ZChain.chain (TransFinite (ind f mf ay ) y) ) z - SZ1 f mf {y} ay z = TransFinite {λ w → ZChain1 ( λ y → ZChain.chain (TransFinite (ind f mf ay ) y) ) w} indp z where + SZ1 f mf {y} ay z = {!!} where -- TransFinite {λ w → ZChain1 ( λ y → ZChain.chain (TransFinite (ind f mf ay ) y) ) w} indp z where indp : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → ZChain1 (λ y₂ → ZChain.chain (TransFinite (ind f mf ay) y₂)) y₁) → ZChain1 (λ y₁ → ZChain.chain (TransFinite (ind f mf ay) y₁)) x @@ -716,7 +712,7 @@ zorn01 = proj1 zorn03 zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) zorn02 {x} ax m