Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 490:00c71d1dc316
IsPartialOrder
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 08 Apr 2022 22:03:01 +0900 |
parents | dc7a95dd66c4 |
children | 646831f6b06d |
files | src/zorn.agda |
diffstat | 1 files changed, 16 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Apr 08 17:47:24 2022 +0900 +++ b/src/zorn.agda Fri Apr 08 22:03:01 2022 +0900 @@ -54,6 +54,20 @@ PartialOrderSet A _<_ = (a b : Element A) → (elm a < elm b → ((¬ elm b < elm a) ∧ (¬ (elm a ≡ elm b) ))) ∧ (elm a ≡ elm b → (¬ elm a < elm b) ∧ (¬ elm b < elm a)) +IsPartialOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) +IsPartialOrderSet A _<_ = IsPartialOrder _<A_ _≡A_ where + _<A_ : (x y : Element A ) → Set n + x <A y = elm x < elm y + _≡A_ : (x y : Element A ) → Set (suc n) + x ≡A y = elm x ≡ elm y + +IsTotalOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) +IsTotalOrderSet A _<_ = IsTotalOrder _<A_ _≡A_ where + _<A_ : (x y : Element A ) → Set n + x <A y = elm x < elm y + _≡A_ : (x y : Element A ) → Set (suc n) + x ≡A y = elm x ≡ elm y + me : { A a : HOD } → A ∋ a → Element A me {A} {a} lt = record { elm = a ; is-elm = lt } @@ -77,7 +91,6 @@ fb : (x : Ordinal ) → x o< y → HOD A∋fb : (ox : Ordinal ) → (x<y : ox o< y ) → A ∋ fb ox x<y monotonic : {ox oz : Ordinal } → (x<y : ox o< y ) → (z<y : oz o< y ) → ox o< oz → fb ox x<y < fb oz z<y - injection : {ox oz : Ordinal } → (x<y : ox o< y ) → (z<y : oz o< y ) → fb ox x<y ≡ fb oz z<y → ox ≡ oz Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n } → o∅ o< & A @@ -131,7 +144,7 @@ bx-inject : (z : ZChain A (& A) _<_ ) → {x y : Element (B z)} → BX.bx (is-elm x) ≡ BX.bx (is-elm y) → elm x ≡ elm y bx-inject z {x} {y} eq = begin elm x ≡⟨ {!!} ⟩ - {!!} ≡⟨ cong (λ k → {!!} ) ( ZChain.injection z {!!} {!!} ? ) ⟩ + {!!} ≡⟨ cong (λ k → {!!} ) {!!} ⟩ {!!} ≡⟨ {!!} ⟩ elm y ∎ where open ≡-Reasoning B-is-total : (z : ZChain A (& A) _<_ ) → TotalOrderSet (B z) _<_ @@ -139,7 +152,7 @@ ... | tri< a ¬b ¬c = tri< z10 (λ eq → proj1 (proj2 (PO-B z x y) eq ) z10) (λ ¬c → proj1 (proj1 (PO-B z y x) ¬c ) z10) where z10 : elm x < elm y z10 = bx-monotonic z {x} {y} a - ... | tri≈ ¬a b ¬c = tri≈ {!!} {!!} {!!} + ... | tri≈ ¬a b ¬c = tri≈ {!!} (bx-inject z {x} {y} b) {!!} ... | tri> ¬a ¬b c = tri> (λ ¬a → proj1 (proj1 (PO-B z x y) ¬a ) (bx-monotonic z {y} {x} c) ) (λ eq → proj2 (proj2 (PO-B z x y) eq ) (bx-monotonic z {y} {x} c)) (bx-monotonic z {y} {x} c) ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (B z) _<_ ) ZChain→¬SUP z sp = ⊥-elim {!!} where