Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1201:03684784bc5f
...
author | kono |
---|---|
date | Thu, 02 Mar 2023 11:09:02 +0800 |
parents | 42000f20fdbe |
children | d6781ad8149e |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 53 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Wed Mar 01 16:34:41 2023 +0900 +++ b/src/Tychonoff.agda Thu Mar 02 11:09:02 2023 +0800 @@ -35,7 +35,7 @@ open import filter O open import OPair O open import Topology O -open import maximum-filter O +-- open import maximum-filter O open Filter open Topology @@ -62,11 +62,30 @@ ((F : Filter {Power P} {P} (λ x → x) ) (UF : ultra-filter F ) → UFLP TP F UF ) → FIP TP UFLP→FIP {P} TP uflp with trio< (& P) o∅ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) -... | tri≈ ¬a b ¬c = record { limit = ? ; is-limit = {!!} } where +... | tri≈ ¬a P=0 ¬c = record { limit = λ CX fip → o∅ ; is-limit = fip03 } where -- P is empty fip02 : {x : Ordinal } → ¬ odef P x - fip02 {x} Px = ⊥-elim ( o<¬≡ (sym b) (∈∅< Px) ) -... | tri> ¬a ¬b 0<P = record { limit = ? ; is-limit = uf01 } where + fip02 {x} Px = ⊥-elim ( o<¬≡ (sym P=0) (∈∅< Px) ) + fip03 : {X : Ordinal} (CX : * X ⊆ CS TP) (fip : {x : Ordinal} → Subbase (* X) x → o∅ o< x) {x : Ordinal} → + odef (* X) x → odef (* x) o∅ + -- empty P case + -- if 0 < X then 0 < x ∧ P ∋ xfrom fip + -- if 0 ≡ X then ¬ odef X x + fip03 {X} CX fip {x} xx with trio< o∅ X + ... | tri< 0<X ¬b ¬c = ⊥-elim ( ¬∅∋ (subst₂ (λ j k → odef j k ) (trans (trans (sym *iso) (cong (*) P=0)) o∅≡od∅ ) (sym &iso) + ( cs⊆L TP (subst (λ k → odef (CS TP) k ) (sym &iso) (CX xx)) xe ))) where + 0<x : o∅ o< x + 0<x = fip (gi xx ) + e : HOD -- we have an element of x + e = ODC.minimal O (* x) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<x) ) + xe : odef (* x) (& e) + xe = ODC.x∋minimal O (* x) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<x) ) + ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬∅∋ (subst₂ (λ j k → odef j k ) ( begin + * X ≡⟨ cong (*) (sym 0=X) ⟩ + * o∅ ≡⟨ o∅≡od∅ ⟩ + od∅ ∎ ) (sym &iso) xx ) ) where open ≡-Reasoning + ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) +... | tri> ¬a ¬b 0<P = record { limit = λ CSX fip → UFLP.limit (uflp (F CSX fip) (ultraf CSX fip)) ; is-limit = ? } where fip : {X : Ordinal} → * X ⊆ CS TP → Set n fip {X} CSX = {x : Ordinal} → Subbase (* X) x → o∅ o< x N : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip CSX → HOD @@ -74,12 +93,30 @@ ; <odmax = λ {x} lt → subst₂ (λ j k → j o< osuc k) &iso refl (⊆→o≤ (FBase.u⊆P lt)) } N⊆PP : {X : Ordinal } → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → N CSX fp ⊆ Power P N⊆PP CSX fp nx b xb = FBase.u⊆P nx xb - nc : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → HOD - nc = ? - N∋nc :{X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → odef (N CSX fp) (& (nc CSX fp) ) - N∋nc = ? + nc : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fip : fip CSX) → HOD + nc {X} CSX fip with trio< o∅ X + ... | tri< 0<X ¬b ¬c = ODC.minimal O (* (& e)) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) (fip (gi Xe))) ) where + e : HOD -- we have an element of X + e = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) + Xe : odef (* X) (& e) + Xe = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) + ... | tri≈ ¬a b ¬c = od∅ + ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) + N∋nc :{X : Ordinal} → (CSX : * X ⊆ CS TP) → (fip : fip CSX) → odef (N CSX fip) (& (nc CSX fip) ) + N∋nc {X} CSX fip with trio< o∅ X + ... | tri< 0<X ¬b ¬c = record { b = ? ; x = ? ; b⊆X = ? ; sb = ? ; u⊆P = ? ; x⊆u = ? } where + e : HOD -- we have an element of X + e = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) + Xe : odef (* X) (& e) + Xe = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) + nn01 = ODC.minimal O (* (& e)) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) (fip (gi Xe))) ) + ... | tri≈ ¬a b ¬c = ? -- od∅ + ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) 0<PP : o∅ o< & (Power P) - 0<PP = ? + 0<PP = subst (λ k → k o< & (Power P)) &iso ( c<→o< (subst (λ k → odef (Power P) k) (sym &iso) nn00 )) where + nn00 : odef (Power P) o∅ + nn00 x lt with subst (λ k → odef k x) o∅≡od∅ lt + ... | x<0 = ⊥-elim ( ¬x<0 x<0) -- -- FIP defines a filter -- @@ -115,11 +152,11 @@ -- then we have maximum ultra filter -- maxf : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp) - maxf {X} CSX fp = F→Maximum {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc CSX fp) (proper CSX fp) + maxf {X} CSX fp = ? -- F→Maximum {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc CSX fp) (proper CSX fp) mf : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → Filter {Power P} {P} (λ x → x) mf {X} CSX fp = MaximumFilter.mf (maxf CSX fp) ultraf : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ultra-filter ( mf CSX fp) - ultraf {X} CSX fp = F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc CSX fp) (proper CSX fp) + ultraf {X} CSX fp = ? -- F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc CSX fp) (proper CSX fp) -- -- so i has a limit as a limit of UIP -- @@ -129,7 +166,7 @@ → Neighbor TP (limit CSX fp) v → * v ⊆ filter ( mf CSX fp ) uf02 {X} {v} CSX fp nei {x} vx = UFLP.is-limit ( uflp ( mf CSX fp ) (ultraf CSX fp)) nei vx -- - -- the limit is an element of entire elements of X + -- the limit is an limit of entire elements of X -- uf01 : {X : Ordinal} (CSX : * X ⊆ CS TP) (fp : fip {X} CSX) {x : Ordinal} → odef (* X) x → odef (* x) (limit CSX fp) uf01 {X} CSX fp {x} xx with ODC.∋-p O (* x) (* (limit CSX fp)) @@ -151,7 +188,7 @@ FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP → (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F ) → UFLP {P} TP F UF -FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 ; P∋limit = ? ; is-limit = ufl00 } where +FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ? ; P∋limit = ? ; is-limit = ufl00 } where -- -- take closure of given filter elements -- @@ -168,9 +205,9 @@ -- so we have a limit -- limit : Ordinal - limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 + limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ? -- ufl01 ufl02 : {y : Ordinal } → odef (* (& CF)) y → odef (* y) limit - ufl02 = FIP.is-limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 + ufl02 = FIP.is-limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ? -- ufl01 -- -- Neigbor of limit ⊆ Filter -- @@ -193,7 +230,7 @@ uflQ : (F : Filter {Power Q} {Q} (λ x → x)) (UF : ultra-filter F) → UFLP TQ F UF uflQ F UF = FIP→UFLP TQ (Compact→FIP TQ CQ) F UF - -- Product of UFL has limit point + -- Product of UFL has a limit point uflPQ : (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F) → UFLP (ProductTopology TP TQ) F UF uflPQ F UF = record { limit = & < * ( UFLP.limit uflp ) , * ( UFLP.limit uflq ) > ; P∋limit = Pf ; is-limit = isL } where