Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 995:04f4baee7b68
UChain is now u o< x
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 17 Nov 2022 08:36:03 +0900 |
parents | a15f1cddf4c6 |
children | 61d74b3d5456 |
files | src/zorn.agda |
diffstat | 1 files changed, 36 insertions(+), 28 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Nov 17 03:33:19 2022 +0900 +++ b/src/zorn.agda Thu Nov 17 08:36:03 2022 +0900 @@ -280,7 +280,7 @@ data UChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) (supf : Ordinal → Ordinal) (x : Ordinal) : (z : Ordinal) → Set n where ch-init : {z : Ordinal } (fc : FClosure A f y z) → UChain A f mf ay supf x z - ch-is-sup : (u : Ordinal) {z : Ordinal } (u<x : supf u o< supf x) ( is-sup : ChainP A f mf ay supf u ) + ch-is-sup : (u : Ordinal) {z : Ordinal } (u<x : u o< x) ( is-sup : ChainP A f mf ay supf u ) ( fc : FClosure A f (supf u) z ) → UChain A f mf ay supf x z -- @@ -422,7 +422,7 @@ chain-mono f mf ay supf supf-mono {a} {b} {c} a≤b ⟪ ua , ch-init fc ⟫ = ⟪ ua , ch-init fc ⟫ chain-mono f mf ay supf supf-mono {a} {b} {c} a≤b ⟪ uaa , ch-is-sup ua ua<x is-sup fc ⟫ = - ⟪ uaa , ch-is-sup ua (ordtrans<-≤ ua<x (supf-mono a≤b ) ) is-sup fc ⟫ + ⟪ uaa , ch-is-sup ua (ordtrans<-≤ ua<x a≤b) is-sup fc ⟫ record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) ( z : Ordinal ) : Set (Level.suc n) where @@ -522,35 +522,33 @@ → ( { x : Ordinal } → z o≤ x → supf z o≤ supf1 x) → UnionCF A f mf ay supf z ⊆' UnionCF A f mf ay supf1 z UChain⊆ A f mf {z} {y} ay {supf} {supf1} supf-mono eq<x lex ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ -UChain⊆ A f mf {z} {y} ay {supf} {supf1} supf-mono eq<x lex ⟪ az , ch-is-sup u {x} u<x is-sup fc ⟫ = ⟪ az , ch-is-sup u u<x1 cp1 fc1 ⟫ where - u<x0 : u o< z - u<x0 = supf-inject0 supf-mono u<x - u<x1 : supf1 u o< supf1 z - u<x1 = subst (λ k → k o< supf1 z ) (eq<x u<x0) (ordtrans<-≤ u<x (lex o≤-refl ) ) +UChain⊆ A f mf {z} {y} ay {supf} {supf1} supf-mono eq<x lex ⟪ az , ch-is-sup u {x} u<x is-sup fc ⟫ = ⟪ az , ch-is-sup u u<x cp1 fc1 ⟫ where fc1 : FClosure A f (supf1 u) x - fc1 = subst (λ k → FClosure A f k x ) (eq<x u<x0) fc + fc1 = subst (λ k → FClosure A f k x ) (eq<x u<x) fc + supf1-mono : {x y : Ordinal } → x o≤ y → supf1 x o≤ supf1 y + supf1-mono = ? uc01 : {s : Ordinal } → supf1 s o< supf1 u → s o< z uc01 {s} s<u with trio< s z ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim ( o≤> uc02 s<u ) where -- (supf-mono (o<→≤ u<x0)) uc02 : supf1 u o≤ supf1 s uc02 = begin - supf1 u <⟨ u<x1 ⟩ + supf1 u ≤⟨ supf1-mono (o<→≤ u<x) ⟩ supf1 z ≡⟨ cong supf1 (sym b) ⟩ supf1 s ∎ where open o≤-Reasoning O ... | tri> ¬a ¬b c = ⊥-elim ( o≤> uc03 s<u ) where uc03 : supf1 u o≤ supf1 s uc03 = begin - supf1 u ≡⟨ sym (eq<x u<x0) ⟩ - supf u <⟨ u<x ⟩ + supf1 u ≡⟨ sym (eq<x u<x) ⟩ + supf u ≤⟨ supf-mono (o<→≤ u<x) ⟩ supf z ≤⟨ lex (o<→≤ c) ⟩ supf1 s ∎ where open o≤-Reasoning O cp1 : ChainP A f mf ay supf1 u - cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (eq<x u<x0) (ChainP.fcy<sup is-sup fc ) - ; order = λ {s} {z} s<u fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (eq<x u<x0) - (ChainP.order is-sup (subst₂ (λ j k → j o< k ) (sym (eq<x (uc01 s<u) )) (sym (eq<x u<x0)) s<u) + cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (eq<x u<x) (ChainP.fcy<sup is-sup fc ) + ; order = λ {s} {z} s<u fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (eq<x u<x) + (ChainP.order is-sup (subst₂ (λ j k → j o< k ) (sym (eq<x (uc01 s<u) )) (sym (eq<x u<x)) s<u) (subst (λ k → FClosure A f k z ) (sym (eq<x (uc01 s<u) )) fc )) - ; supu=u = trans (sym (eq<x u<x0)) (ChainP.supu=u is-sup) } + ; supu=u = trans (sym (eq<x u<x)) (ChainP.supu=u is-sup) } record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) (zc : ZChain A f mf ay (& A)) ( z : Ordinal ) : Set (Level.suc n) where @@ -702,7 +700,7 @@ zc05 : odef (UnionCF A f mf ay supf b) (supf s) zc05 with zc04 ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ - ... | ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ as , ch-is-sup u zc08 is-sup fc ⟫ where + ... | ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ as , ch-is-sup u (ZChain.supf-inject zc zc08) is-sup fc ⟫ where zc07 : FClosure A f (supf u) (supf s) -- supf u ≤ supf s → supf u o≤ supf s zc07 = fc zc06 : supf u ≡ u @@ -735,7 +733,7 @@ is-max {a} {b} ua b<x ab P a<b with ODC.or-exclude O P is-max {a} {b} ua b<x ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua ab has-prev a<b is-max {a} {b} ua b<x ab P a<b | case2 is-sup with osuc-≡< (ZChain.supf-mono zc (o<→≤ b<x)) - ... | case2 sb<sx = ⟪ ab , ch-is-sup b sb<sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where + ... | case2 sb<sx = ⟪ ab , ch-is-sup b b<x m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where b<A : b o< & A b<A = z09 ab m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) f b @@ -772,7 +770,7 @@ is-max {a} {b} ua b<x ab P a<b | case2 is-sup with IsSUP.x≤sup (proj2 is-sup) (init-uchain A f mf ay ) ... | case1 b=y = ⟪ subst (λ k → odef A k ) b=y ay , ch-init (subst (λ k → FClosure A f y k ) b=y (init ay refl )) ⟫ ... | case2 y<b with osuc-≡< (ZChain.supf-mono zc (o<→≤ b<x)) - ... | case2 sb<sx = ⟪ ab , ch-is-sup b sb<sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where + ... | case2 sb<sx = ⟪ ab , ch-is-sup b b<x m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where m09 : b o< & A m09 = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab)) m07 : {z : Ordinal} → FClosure A f y z → z <= ZChain.supf zc b @@ -1032,16 +1030,21 @@ fcpu {u} {z} fc u≤px = subst (λ k → FClosure A f k z ) (sym (sf1=sf0 u≤px)) fc fcs<sup : {a b w : Ordinal } → a o< b → b o≤ x → FClosure A f (supf1 a) w → odef (UnionCF A f mf ay supf1 b) w - fcs<sup with trio< a px - ... | tri< a ¬b ¬c = ? -- chain-mono ZChain.fcs<sup a - ... | tri≈ ¬a b ¬c = ? -- a ≡ px , b ≡ x, sp o≤ x → supf px o≤ supf x + fcs<sup {a} {b} {w} a<b b≤x fc with trio< a px + ... | tri< a<px ¬b ¬c = ? -- chain-mono ZChain.fcs<sup a + ... | tri≈ ¬a a=px ¬c = ⟪ A∋fc _ f mf fc , ch-is-sup px px<b ? ? ⟫ where -- a ≡ px , b ≡ x, sp o≤ x → supf px o≤ supf x + px<b : px o< b + px<b = subst₂ (λ j k → j o< k) a=px refl a<b + b=x : b ≡ x + b=x with trio< b x + ... | tri< a ¬b ¬c = ? + ... | tri≈ ¬a b ¬c = b + ... | tri> ¬a ¬b c = ⊥-elim ( o<> c ? ) -- subst₂ (λ j k → j o≤ k ) ? ? a<b ... | tri> ¬a ¬b c = ? -- px o< a o< b o≤ x zc11 : {z : Ordinal} → odef (UnionCF A f mf ay supf1 x) z → odef pchainpx z zc11 {z} ⟪ az , ch-init fc ⟫ = case1 ⟪ az , ch-init fc ⟫ - zc11 {z} ⟪ az , ch-is-sup u su<sx is-sup fc ⟫ = zc21 fc where - u<x : u o< x - u<x = supf-inject0 supf1-mono su<sx + zc11 {z} ⟪ az , ch-is-sup u u<x is-sup fc ⟫ = zc21 fc where u≤px : u o≤ px u≤px = zc-b<x _ u<x zc21 : {z1 : Ordinal } → FClosure A f (supf1 u) z1 → odef pchainpx z1 @@ -1050,7 +1053,7 @@ ... | case1 ⟪ ua1 , ch-is-sup u u<x u1-is-sup fc₁ ⟫ = case1 ⟪ proj2 ( mf _ ua1) , ch-is-sup u u<x u1-is-sup (fsuc _ fc₁) ⟫ ... | case2 fc = case2 (fsuc _ fc) zc21 (init asp refl ) with trio< (supf0 u) (supf0 px) | inspect supf1 u - ... | tri< a ¬b ¬c | _ = case1 ⟪ asp , ch-is-sup u a record {fcy<sup = zc13 ; order = zc17 + ... | tri< a ¬b ¬c | _ = case1 ⟪ asp , ch-is-sup u u<px record {fcy<sup = zc13 ; order = zc17 ; supu=u = trans (sym (sf1=sf0 (o<→≤ u<px))) (ChainP.supu=u is-sup) } (init asp0 (sym (sf1=sf0 (o<→≤ u<px))) ) ⟫ where u<px : u o< px u<px = ZChain.supf-inject zc a @@ -1141,7 +1144,12 @@ ... | tri> ¬a ¬b c = o≤-refl0 ? -- (sym ( ZChain.supfmax zc px<x )) zc17 : {z : Ordinal } → supf0 z o≤ supf0 px - zc17 = ? -- px o< z, px o< supf0 px + zc17 {z} with trio< z px + ... | tri< a ¬b ¬c = ZChain.supf-mono zc (o<→≤ a) + ... | tri≈ ¬a b ¬c = o≤-refl0 (cong supf0 b) + ... | tri> ¬a ¬b px<z = o≤-refl0 zc177 where + zc177 : supf0 z ≡ supf0 px + zc177 = ZChain.supfmax zc px<z -- px o< z, px o< supf0 px supf-mono1 : {z w : Ordinal } → z o≤ w → supf1 z o≤ supf1 w supf-mono1 {z} {w} z≤w with trio< w px @@ -1150,9 +1158,9 @@ ... | tri< a ¬b ¬c = zc17 ... | tri≈ ¬a refl ¬c = o≤-refl ... | tri> ¬a ¬b c = o≤-refl - supf-mono1 {z} {w} z≤w | tri> ¬a ¬b c with trio< z px + supf-mono1 {z} {w} z≤w | tri> ¬a ¬b px<w with trio< z px ... | tri< a ¬b ¬c = zc17 - ... | tri≈ ¬a b ¬c = o≤-refl0 ? + ... | tri≈ ¬a b ¬c = o≤-refl0 (cong supf0 b) -- z=px supf1 z = supf0 z, supf1 w = supf0 px ... | tri> ¬a ¬b c = o≤-refl pchain1 : HOD