Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1258:04fc80af6f77
....
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Mar 2023 00:33:43 +0900 |
parents | 004d8794697f |
children | 4993a95d3fc8 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 1 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Fri Mar 17 00:30:43 2023 +0900 +++ b/src/generic-filter.agda Fri Mar 17 00:33:43 2023 +0900 @@ -130,23 +130,6 @@ gf05 {a} {b} {x} (case1 ax) nax nbx = nax ax gf05 {a} {b} {x} (case2 bx) nax nbx = nbx bx -gf02 : {P a b : HOD } → (P \ a) ∩ (P \ b) ≡ ( P \ (a ∪ b) ) -gf02 {P} {a} {b} = ==→o≡ record { eq→ = gf03 ; eq← = gf04 } where - gf03 : {x : Ordinal} → odef ((P \ a) ∩ (P \ b)) x → odef (P \ (a ∪ b)) x - gf03 {x} ⟪ ⟪ Px , ¬ax ⟫ , ⟪ _ , ¬bx ⟫ ⟫ = ⟪ Px , (λ pab → gf05 {a} {b} {x} pab ¬ax ¬bx ) ⟫ - gf04 : {x : Ordinal} → odef (P \ (a ∪ b)) x → odef ((P \ a) ∩ (P \ b)) x - gf04 {x} ⟪ Px , abx ⟫ = ⟪ ⟪ Px , (λ ax → abx (case1 ax) ) ⟫ , ⟪ Px , (λ bx → abx (case2 bx) ) ⟫ ⟫ - -gf45 : {P a b : HOD } → (P \ a) ∪ (P \ b) ≡ ( P \ (a ∩ b) ) -gf45 {P} {a} {b} = ==→o≡ record { eq→ = gf03 ; eq← = gf04 } where - gf03 : {x : Ordinal} → odef ((P \ a) ∪ (P \ b)) x → odef (P \ (a ∩ b)) x - gf03 {x} (case1 pa) = ⟪ proj1 pa , (λ ab → proj2 pa (proj1 ab) ) ⟫ - gf03 {x} (case2 pb) = ⟪ proj1 pb , (λ ab → proj2 pb (proj2 ab) ) ⟫ - gf04 : {x : Ordinal} → odef (P \ (a ∩ b)) x → odef ((P \ a) ∪ (P \ b)) x - gf04 {x} ⟪ Px , nab ⟫ with ODC.p∨¬p O (odef b x) - ... | case1 bx = case1 ⟪ Px , ( λ ax → nab ⟪ ax , bx ⟫ ) ⟫ - ... | case2 nbx = case2 ⟪ Px , ( λ bx → nbx bx ) ⟫ - open import Data.Nat.Properties open import nat @@ -187,7 +170,7 @@ P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0 → (C : CountableModel ) → GenericFilter {L} {P} LP ( ctl-M C ) P-GenericFilter P L p0 L⊆PP Lp0 C = record { - genf = record { ideal = PDHOD L p0 C ; i⊆L = x∈PP ; ideal1 = ideal1 ; ideal2 = ? } + genf = record { ideal = PDHOD L p0 C ; i⊆L = x∈PP ; ideal1 = ideal1 ; ideal2 = ideal2 } ; generic = fdense } where ideal1 : {p q : HOD} → L ∋ q → PDHOD L p0 C ∋ p → q ⊆ p → PDHOD L p0 C ∋ q