Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 62:05494b4689ed
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 May 2019 13:41:12 +0900 |
parents | f2cb756084e0 |
children | ba43f7ff60d4 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 19 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Wed May 29 13:02:03 2019 +0900 +++ b/ordinal-definable.agda Wed May 29 13:41:12 2019 +0900 @@ -349,26 +349,28 @@ minord x not = ominimal (od→ord x) (∅9 not) minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} minimul x not = ord→od ( mino (minord x not)) + omin→cmin : {x : OD {suc n}} → {not : ¬ x == od∅ } → mino (minord x not) o< (od→ord x) → def x (od→ord (ord→od (mino (minord x not)))) + omin→cmin {x} {not} m<x = def-subst {suc n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl minimul<x : (x : OD {suc n} ) → (not : ¬ x == od∅ ) → x ∋ minimul x not - minimul<x x not = lemma0 (min<x (minord x not)) where - lemma0 : mino (minord x not) o< (od→ord x) → def x (od→ord (ord→od (mino (minord x not)))) - lemma0 m<x = def-subst {suc n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl + minimul<x x not = omin→cmin {x} {not} (min<x (minord x not)) regularity : (x : OD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) regularity x not = regularity-ord (od→ord x) {x} (sym oiso ) not where regularity-ord : (ox : Ordinal ) → {x : OD} → ( x ≡ ord→od ox ) → (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) - regularity-ord ox {x} refl not with ominimal ox (∅10 refl not) - regularity-ord record { lv = Zero ; ord = (Φ .0) } refl not | record { mino = mino ; min<x = case1 () } - regularity-ord record { lv = Zero ; ord = (Φ .0) } refl not | record { mino = mino ; min<x = case2 () } - regularity-ord record { lv = Zero ; ord = (OSuc .0 ord₁) } refl not | record { mino = min ; min<x = case1 () } - regularity-ord record { lv = Zero ; ord = (OSuc .0 ord₁) } refl not | record { mino = record { lv = Suc lv₁ ; ord = ord } ; min<x = case2 () } - regularity-ord record { lv = Zero ; ord = (OSuc .0 ord₁) } refl not | record { mino = record { lv = Zero ; ord = Φ .0 } ; min<x = case2 Φ< } - = record { proj1 = {!!} ; proj2 = record { eq→ = {!!} ; eq← = λ () }} where - lemma : ? -- ominimal ox (∅10 refl not) ≡ minimul x not - lemma = {!!} - regularity-ord record { lv = Zero ; ord = (OSuc .0 ord₁) } refl not | record { mino = record { lv = Zero ; ord = OSuc .0 ord₂ } ; min<x = case2 (s< lt) } = {!!} - regularity-ord record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } refl not | record { mino = min ; min<x = case1 lt } = {!!} - regularity-ord record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } refl not | record { mino = min ; min<x = case2 () } - regularity-ord record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } refl not | record { mino = min ; min<x = min<x } = {!!} - regularity-ord record { lv = (Suc lv₁) ; ord = (ℵ .lv₁) } refl not | record { mino = min ; min<x = min<x } = {!!} + regularity-ord ox {x} refl not with ominimal ox (∅10 refl not) | minimul x not | is-o∅ (mino (minord x not)) | is-o∅ ox + regularity-ord record { lv = Zero ; ord = (Φ .0) } refl not | record { mino = mino ; min<x = case1 () } | r | t | s + regularity-ord record { lv = Zero ; ord = (Φ .0) } refl not | record { mino = mino ; min<x = case2 () } | r | t | s + regularity-ord record { lv = Zero ; ord = (OSuc .0 ord₁) } refl not | record { mino = min ; min<x = case1 () } | r | t | s + regularity-ord record { lv = Zero ; ord = (OSuc .0 ord₁) } refl not | record { mino = record { lv = Suc lv₁ ; ord = ord } ; min<x = case2 () } | r | t | s + regularity-ord record { lv = Zero ; ord = (OSuc .0 ord₁) } refl not | record { mino = record { lv = Zero ; ord = Φ .0 } ; min<x = case2 Φ< } | r | yes p | s + = record { proj1 = _ ; proj2 = record { eq→ = {!!} ; eq← = λ () } } where + lemma : { y : Ordinal } → def ( Select r (λ x₁ → (r ∋ x₁) ∧ (x ∋ x₁))) y → def od∅ y + lemma {y} = {!!} + regularity-ord record { lv = Zero ; ord = (OSuc .0 ord₁) } refl not | record { mino = record { lv = Zero ; ord = Φ .0 } ; min<x = case2 Φ< } | r | no ¬p | yes p = {!!} + regularity-ord record { lv = Zero ; ord = (OSuc .0 ord₁) } refl not | record { mino = record { lv = Zero ; ord = Φ .0 } ; min<x = case2 Φ< } | r | no ¬p | no ¬p₁ = {!!} + regularity-ord record { lv = Zero ; ord = (OSuc .0 ord₁) } refl not | record { mino = record { lv = Zero ; ord = OSuc .0 ord₂ } ; min<x = case2 (s< lt) } | r | t | s = {!!} + regularity-ord record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } refl not | record { mino = min ; min<x = case1 lt } | r | t | s = {!!} + regularity-ord record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } refl not | record { mino = min ; min<x = case2 () } | r | t | s + regularity-ord record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } refl not | record { mino = min ; min<x = min<x } | r | t | s = {!!} + regularity-ord record { lv = (Suc lv₁) ; ord = (ℵ .lv₁) } refl not | record { mino = min ; min<x = min<x } | r | t | s = {!!}