Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1154:0612874b815c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 18 Jan 2023 20:53:01 +0900 |
parents | 5eb972738f9b |
children | c4fd0bfdfbae |
files | src/Topology.agda |
diffstat | 1 files changed, 27 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Wed Jan 18 14:09:53 2023 +0900 +++ b/src/Topology.agda Wed Jan 18 20:53:01 2023 +0900 @@ -54,6 +54,8 @@ CS∋L = ⟪ subst (λ k → k ⊆ L) (sym *iso) (λ x → x) , subst (λ k → odef OS (& k)) (sym lem0) OS∋od∅ ⟫ where lem0 : L \ * (& L) ≡ od∅ lem0 = subst (λ k → L \ k ≡ od∅) (sym *iso) L\L=0 + CS⊆PL : CS ⊆ Power L + CS⊆PL {x} Cx y xy = proj1 Cx xy --- we may add -- OS∋L : OS ∋ L @@ -414,22 +416,28 @@ -- FIP is UFL -record NFIP {P : HOD} (TP : Topology P) {L : HOD} (LP : L ⊆ Power P ) (X : Ordinal) : Set n where +record NFIP {P : HOD} (TP : Topology P) {X : Ordinal } (LP : * X ⊆ CS TP ) (u : Ordinal) : Set n where field - osx : * X ⊆ OS TP - fip : {u x : Ordinal} → * u ⊆ (L \ * X) → Subbase (* u) x → o∅ o< x + b x : Ordinal + 0<x : o∅ o< x + b⊆X : * b ⊆ * X + u⊆X : * u ⊆ * X + x⊆u : * x ⊆ * u + sb : Subbase (* b) x -UFLP→FIP : {P : HOD} (TP : Topology P) → {L : HOD} (LP : L ⊆ Power P ) → - ( (F : Filter {L} {P} LP ) (FP : filter F ∋ P) (UF : ultra-filter F ) → UFLP TP LP F FP UF ) → FIP TP -UFLP→FIP {P} TP {L} LP uflp = record { limit = uf00 ; is-limit = {!!} } where +UFLP→FIP : {P : HOD} (TP : Topology P) → + ( {L : HOD} (LP : L ⊆ Power P ) → (F : Filter {L} {P} LP ) (FP : filter F ∋ P) (UF : ultra-filter F ) → UFLP TP LP F FP UF ) → FIP TP +UFLP→FIP {P} TP uflp = record { limit = uf00 ; is-limit = {!!} } where fip : {X : Ordinal} → * X ⊆ CS TP → Set n fip {X} CSX = {u x : Ordinal} → * u ⊆ * X → Subbase (* u) x → o∅ o< x - N : HOD - N = record { od = record { def = λ X → NFIP TP LP X } ; odmax = ? ; <odmax = ? } - F : Filter {L} {P} LP - F = record { filter = N ; f⊆L = ? ; filter1 = f1 ; filter2 = ? } where - f1 : {p q : HOD} → L ∋ q → N ∋ p → p ⊆ q → N ∋ q - f1 {p} {q} Lq record { osx = osx ; fip = fip } p⊆q = record { osx = ? ; fip = ? } + N : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip CSX → HOD + N {X} CSX fp = record { od = record { def = λ u → NFIP TP {X} CSX u } ; odmax = ? ; <odmax = ? } + N⊆PX : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → N CSX fp ⊆ * X + N⊆PX {X} CSX fp {z} nz = ? + F : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → Filter {* X} {P} (λ lt → CS⊆PL TP (CSX lt)) + F {X} CSX fp = record { filter = N CSX fp ; f⊆L = N⊆PX CSX fp ; filter1 = ? ; filter2 = ? } where + f1 : {p q : HOD} → * X ∋ q → N CSX fp ∋ p → p ⊆ q → N CSX fp ∋ q + f1 {p} {q} Lq Np p⊆q = ? uf00 : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal uf00 {X} CSX fip = ? -- UFLP.limit ( uflp @@ -445,10 +453,13 @@ -- product topology of compact topology is compact Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ) -Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) LPQ uflp ) where +Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflp ) where L = pbase TP TQ LPQ = pbase⊆PL TP TQ -- Product of UFL has limit point - uflp : (F : Filter {pbase TP TQ} LPQ) (LF : filter F ∋ ZFP P Q) (UF : ultra-filter F) - → UFLP (ProductTopology TP TQ) LPQ F LF UF - uflp F LF UF = record { limit = & < ? , {!!} > ; P∋limit = {!!} ; is-limit = {!!} } + uflp : {L : HOD} → (LP : L ⊆ Power (ZFP P Q )) (F : Filter {L} LP) (LF : filter F ∋ ZFP P Q) (UF : ultra-filter F) + → UFLP (ProductTopology TP TQ) LP F LF UF + uflp {L} LP F LF UF = record { limit = & < ? , {!!} > ; P∋limit = {!!} ; is-limit = {!!} } + + +