Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 346:06f10815d0b3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Jul 2020 19:19:02 +0900 |
parents | f895642a8460 |
children | cfecd05a4061 |
files | OD.agda Ordinals.agda |
diffstat | 2 files changed, 14 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 13 14:46:03 2020 +0900 +++ b/OD.agda Mon Jul 13 19:19:02 2020 +0900 @@ -376,7 +376,7 @@ -- We simply assumes infinite-d y has a maximum. -- -- This means that many of OD may not be HODs because of the od→ord mapping divergence. - -- We should have some axioms to prevent this. + -- We should have some axioms to prevent this such as od→ord x o< next (odmax x). -- postulate ωmax : Ordinal
--- a/Ordinals.agda Mon Jul 13 14:46:03 2020 +0900 +++ b/Ordinals.agda Mon Jul 13 19:19:02 2020 +0900 @@ -244,6 +244,19 @@ nexto≡ {x} | tri> ¬a ¬b c = ⊥-elim ((proj2 (proj2 next-limit)) _ (ordtrans <-osuc (proj1 next-limit)) c (λ z eq → o<¬≡ (sym eq) ((proj1 (proj2 next-limit)) _ (osuc< (sym eq))))) + not-limit-p : ( x : Ordinal ) → Dec ( ¬ ((y : Ordinal) → ¬ (x ≡ osuc y) )) + not-limit-p x = TransFinite {λ x → Dec ( ¬ ((y : Ordinal) → ¬ (x ≡ osuc y)))} ind x where + ind : (x : Ordinal) → ((y : Ordinal) → y o< x → Dec (¬ ((y₁ : Ordinal) → ¬ y ≡ osuc y₁))) → Dec (¬ ((y : Ordinal) → ¬ x ≡ osuc y)) + ind x prev with trio< o∅ x + ind x prev | tri< a ¬b ¬c = ? + ind x prev | tri≈ ¬a refl ¬c = no (λ not → not lemma) where + lemma : (y : Ordinal) → o∅ ≡ osuc y → ⊥ + lemma y refl with trio< o∅ y + lemma y refl | tri< a ¬b ¬c = o<> a <-osuc + lemma y refl | tri≈ ¬a b ¬c = o<¬≡ (sym b) <-osuc + lemma y refl | tri> ¬a ¬b c = ¬x<0 c + ind x prev | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) + record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where field os→ : (x : Ordinal) → x o< maxordinal → Ordinal