Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 864:06f692bf7a97
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 10 Sep 2022 02:35:23 +0900 |
parents | f5fc3f5f618f |
children | b095c84310df |
files | src/zorn.agda |
diffstat | 1 files changed, 16 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Sep 09 20:20:39 2022 +0900 +++ b/src/zorn.agda Sat Sep 10 02:35:23 2022 +0900 @@ -780,13 +780,15 @@ zc10 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ zc10 {z} ⟪ az , ch-is-sup u1 u1<x u1-is-sup fc ⟫ = ⟪ az , ch-is-sup u1 (ordtrans u1<x (pxo<x op)) u1-is-sup fc ⟫ zc11 : (¬ xSUP (UnionCF A f mf ay supf0 px) x ) ∨ (HasPrev A pchain x f ) - → {z : Ordinal} → OD.def (od pchain1) z → OD.def (od pchain) z ∨ ( supf0 px ≡ px ) + → {z : Ordinal} → OD.def (od pchain1) z → OD.def (od pchain) z ∨ ( (supf0 px ≡ px) ∧ FClosure A f px z ) zc11 P {z} ⟪ az , ch-init fc ⟫ = case1 ⟪ az , ch-init fc ⟫ zc11 P {z} ⟪ az , ch-is-sup u1 u1<x u1-is-sup fc ⟫ with trio< u1 px ... | tri< u1<px ¬b ¬c = case1 ⟪ az , ch-is-sup u1 u1<px u1-is-sup fc ⟫ - ... | tri≈ ¬a eq ¬c = case2 (subst (λ k → supf0 k ≡ k) eq s1u=u) where + ... | tri≈ ¬a eq ¬c = case2 ⟪ subst (λ k → supf0 k ≡ k) eq s1u=u , subst (λ k → FClosure A f k z) zc12 fc ⟫ where s1u=u : supf0 u1 ≡ u1 s1u=u = ChainP.supu=u u1-is-sup + zc12 : supf0 u1 ≡ px + zc12 = trans (ChainP.supu=u u1-is-sup) eq zc11 (case1 ¬sp=x) {z} ⟪ az , ch-is-sup u1 u1<x u1-is-sup fc ⟫ | tri> ¬a ¬b px<u = ⊥-elim (¬sp=x zcsup) where eq : u1 ≡ x eq with trio< u1 x @@ -815,9 +817,12 @@ zcsup : xSUP (UnionCF A f mf ay supf0 px) x zcsup = record { ax = subst (λ k → odef A k) (trans zc12 eq) (supf∈A o≤-refl) ; is-sup = record { x<sup = x<sup } } - zc11 (case2 hp) {z} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup fc ⟫ | tri> ¬a ¬b px<u = case1 (zc20 fc ) where + zc11 (case2 hp) {z} ⟪ az , ch-is-sup u1 u1<x u1-is-sup fc ⟫ | tri> ¬a ¬b px<u = case1 (zc20 fc ) where eq : u1 ≡ x - eq = ? + eq with trio< u1 x + ... | tri< a ¬b ¬c = ⊥-elim ( ¬p<x<op ⟪ px<u , subst (λ k → u1 o< k ) (sym (Oprev.oprev=x op )) a ⟫ ) + ... | tri≈ ¬a b ¬c = b + ... | tri> ¬a ¬b c = ⊥-elim ( o<> u1<x c ) zc20 : {z : Ordinal} → FClosure A f (supf0 u1) z → OD.def (od pchain) z zc20 {z} (init asu su=z ) = zc13 where zc14 : x ≡ z @@ -844,9 +849,13 @@ ... | case1 eq = eq ... | case2 z<x = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ ) zc34 : {w : HOD} → UnionCF A f mf ay supf0 z ∋ w → (w ≡ SUP.sup zc32) ∨ (w < SUP.sup zc32) - zc34 {w} lt = SUP.x<sup zc32 ? where - zc35 : odef (UnionCF A f mf ay supf0 x) (& w) - zc35 = subst (λ k → odef (UnionCF A f mf ay supf0 k) (& w)) zc30 lt + zc34 {w} lt with zc11 P (subst (λ k → odef (UnionCF A f mf ay supf0 k) (& w)) zc30 lt) + ... | case1 lt = SUP.x<sup zc32 lt + ... | case2 P = ? + -- FClosure A f px z + -- where + -- zc35 : odef (UnionCF A f mf ay supf0 x) (& w) + -- zc35 = zc33 : supf0 z ≡ & (SUP.sup zc32) zc33 = trans (sym (supfx (o≤-refl0 (sym zc30)))) ( ZChain.supf-is-sup zc o≤-refl ) sup=u : {b : Ordinal} (ab : odef A b) →