Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 887:09915b6b4212
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 03 Oct 2022 01:43:00 +0900 |
parents | 7c4b65fcba97 |
children | 49e0ab5e30e0 |
files | src/zorn.agda |
diffstat | 1 files changed, 37 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Oct 02 19:30:19 2022 +0900 +++ b/src/zorn.agda Mon Oct 03 01:43:00 2022 +0900 @@ -1042,9 +1042,11 @@ zc17 : {s : Ordinal} {z1 : Ordinal} → supf1 s o< supf1 px → FClosure A f (supf1 s) z1 → (z1 ≡ supf1 px) ∨ (z1 << supf1 px) zc17 {s} {z1} ss<spx fc = subst (λ k → (z1 ≡ k) ∨ (z1 << k)) (trans (cong supf0 b) (sym (sf1=sf0 o≤-refl))) - ( ChainP.order is-sup (subst₂ (λ j k → j o< k) (sf1=sf0 s≤px) ? ss<spx) (fcup fc s≤px) ) where + ( ChainP.order is-sup (subst₂ (λ j k → j o< k) (sf1=sf0 s≤px) zc19 ss<spx) (fcup fc s≤px) ) where + zc19 : supf1 px ≡ supf0 u + zc19 = trans (sf1=sf0 o≤-refl) (cong supf0 (sym b)) s≤px : s o≤ px - s≤px = ? + s≤px = o<→≤ (supf-inject0 supf-mono1 ss<spx) ... | tri> ¬a ¬b c | _ = ⊥-elim ( ¬p<x<op ⟪ c , (ordtrans u<x <-osuc ) ⟫ ) zc12 {z} (case2 fc) = zc21 fc where zc21 : {z1 : Ordinal } → FClosure A f px z1 → odef (UnionCF A f mf ay supf1 x) z1 @@ -1061,7 +1063,21 @@ zc13 {z} fc = subst (λ k → (z ≡ k) ∨ ( z << k )) (sym (sf1=sf0 o≤-refl)) ( ZChain.fcy<sup zc o≤-refl fc ) zc17 : {s : Ordinal} {z1 : Ordinal} → supf1 s o< supf1 px → FClosure A f (supf1 s) z1 → (z1 ≡ supf1 px) ∨ (z1 << supf1 px) - zc17 {s} {z1} ss<spx fc = ? + zc17 {s} {z1} ss<spx fc = subst (λ k → (z1 ≡ k) ∨ (z1 << k )) mins-is-spx + (MinSUP.x<sup mins (csupf17 (fcup fc (o<→≤ s<px) )) ) where + mins : MinSUP A (UnionCF A f mf ay supf0 px) + mins = ZChain.minsup zc o≤-refl + mins-is-spx : MinSUP.sup mins ≡ supf1 px + mins-is-spx = trans (sym ( ZChain.supf-is-minsup zc o≤-refl ) ) (sym (sf1=sf0 o≤-refl )) + s<px : s o< px + s<px = supf-inject0 supf-mono1 ss<spx + sf<px : supf0 s o< px + sf<px = subst₂ (λ j k → j o< k ) (sf1=sf0 (o<→≤ s<px)) (trans (sf1=sf0 o≤-refl) (sym sfpx=px)) ss<spx + -- (sf1=sf0 ?) (trans ? sfpx=px ) ss<spx + csupf17 : {z1 : Ordinal } → FClosure A f (supf0 s) z1 → odef (UnionCF A f mf ay supf0 px) z1 + csupf17 (init as refl ) = ZChain.csupf zc sf<px + csupf17 (fsuc x fc) = ZChain.f-next zc (csupf17 fc) + record STMP {z : Ordinal} (z≤x : z o≤ x ) : Set (Level.suc n) where field @@ -1080,23 +1096,24 @@ ; x<sup = ? ; minsup = ? } ; tsup=sup = ? } - csupf1 : {b : Ordinal } → supf1 b o< x → odef (UnionCF A f mf ay supf1 x) (supf1 b) - csupf1 {b} sb<z = ⟪ asb , ch-is-sup (supf1 b) sb<z - record { fcy<sup = ? ; order = order ; supu=u = ? } - (init ? ? ) ⟫ where - b<x : b o< x - b<x = ZChain.supf-inject zc ? - asb : odef A (supf1 b) - asb = ? -- ZChain.supf∈A zc ? -- (o<→≤ b<x) - supb : SUP A (UnionCF A f mf ay supf1 (supf1 b)) - supb = ? -- ZChain.sup zc (o<→≤ sb<z) - supb-is-b : supf1 (supf1 b) ≡ & (SUP.sup supb) - supb-is-b = ? -- ZChain.supf-is-sup zc ? -- (o<→≤ sb<z) - order : {s z1 : Ordinal} → supf1 s o< supf1 (supf1 b) → - FClosure A f (supf1 s) z1 → (z1 ≡ supf1 (supf1 b)) ∨ (z1 << supf1 (supf1 b)) - order {s} {z1} ss<ssb fs with SUP.x<sup supb ? - ... | case1 eq = ? - ... | case2 lt = ? + csupf1 : {z1 : Ordinal } → supf1 z1 o< x → odef (UnionCF A f mf ay supf1 x) (supf1 z1) + csupf1 {z1} sz1<x with trio< (supf0 z1) px + ... | tri< a ¬b ¬c = subst₂ (λ j k → odef j k ) (sym ch1x=pchainpx) (sym (sf1=sf0 z1≤px)) (case1 (ZChain.csupf zc a )) where + z1≤px : z1 o≤ px + z1≤px = o<→≤ ( ZChain.supf-inject zc (subst (λ k → supf0 z1 o< k ) sfpx=px a )) + ... | tri≈ ¬a b ¬c = subst₂ (λ j k → odef j k ) (sym ch1x=pchainpx) zc20 (case2 (init apx sfpx=px )) where + z1≤px : z1 o≤ px + z1≤px with trio< z1 px + ... | tri< a ¬b ¬c = o<→≤ a + ... | tri≈ ¬a b ¬c = o≤-refl0 b + ... | tri> ¬a ¬b c = ⊥-elim ( o<> c ( supf-inject0 supf-mono1 (subst (λ k → supf1 z1 o< k ) refl ?) ) ) + zc20 : supf0 px ≡ supf1 z1 + zc20 = begin + supf0 px ≡⟨ ? ⟩ + px ≡⟨ ? ⟩ + supf0 z1 ≡⟨ ? ⟩ + supf1 z1 ∎ where open ≡-Reasoning + ... | tri> ¬a ¬b c = ⊥-elim ( ? ) ... | case2 px<spfx = ? where