Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 612:099ca2fea51c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jun 2022 21:20:24 +0900 |
parents | d6ad1af5299e |
children | 7c5a922931e5 |
files | src/OD.agda src/Ordinals.agda src/ordinal.agda src/zorn.agda |
diffstat | 4 files changed, 14 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OD.agda Fri Jun 17 18:45:08 2022 +0900 +++ b/src/OD.agda Fri Jun 17 21:20:24 2022 +0900 @@ -215,8 +215,6 @@ ≡od∅→=od∅ : {x : HOD} → x ≡ od∅ → od x == od od∅ ≡od∅→=od∅ {x} eq = ≡o∅→=od∅ (subst (λ k → & x ≡ k ) ord-od∅ ( cong & eq ) ) --- o<-irr : { x y : Ordinal } → { lt lt1 : x o< y } → lt ≡ lt1 - ∅0 : record { def = λ x → Lift n ⊥ } == od od∅ eq→ ∅0 {w} (lift ()) eq← ∅0 {w} lt = lift (¬x<0 lt)
--- a/src/Ordinals.agda Fri Jun 17 18:45:08 2022 +0900 +++ b/src/Ordinals.agda Fri Jun 17 21:20:24 2022 +0900 @@ -26,6 +26,7 @@ <-osuc : { x : ord } → x o< osuc x osuc-≡< : { a x : ord } → x o< osuc a → (x ≡ a ) ∨ (x o< a) Oprev-p : ( x : ord ) → Dec ( Oprev ord osuc x ) + o<-irr : { x y : ord } → { lt lt1 : x o< y } → lt ≡ lt1 TransFinite : { ψ : ord → Set (suc n) } → ( (x : ord) → ( (y : ord ) → y o< x → ψ y ) → ψ x ) → ∀ (x : ord) → ψ x
--- a/src/ordinal.agda Fri Jun 17 18:45:08 2022 +0900 +++ b/src/ordinal.agda Fri Jun 17 21:20:24 2022 +0900 @@ -200,6 +200,17 @@ lemma y lt | case1 refl = proj1 ( TransFinite1 lx ox ) lemma y lt | case2 lt1 = proj2 ( TransFinite1 lx ox ) y lt1 +open import Data.Nat.Properties as DP +OrdIrr : {n : Level } {x y : Ordinal {suc n} } {lt lt1 : x o< y} → lt ≡ lt1 +OrdIrr {n} {ordinal lv₁ ord₁} {ordinal lv₂ ord₂} {case1 x} {case1 x₁} = cong case1 (DP.<-irrelevant _ _ ) +OrdIrr {n} {ordinal lv₁ ord₁} {ordinal lv₂ ord₂} {case1 x} {case2 x₁} = ⊥-elim ( nat-≡< ( d<→lv x₁ ) x ) +OrdIrr {n} {ordinal lv₁ ord₁} {ordinal lv₂ ord₂} {case2 x} {case1 x₁} = ⊥-elim ( nat-≡< ( d<→lv x ) x₁ ) +OrdIrr {n} {ordinal lv₁ .(Φ lv₁)} {ordinal .lv₁ .(OSuc lv₁ _)} {case2 Φ<} {case2 Φ<} = refl +OrdIrr {n} {ordinal lv₁ (OSuc lv₁ a)} {ordinal .lv₁ (OSuc lv₁ b)} {case2 (s< x)} {case2 (s< x₁)} = cong (λ k → case2 (s< k)) (lemma1 _ _ x x₁) where + lemma1 : {lx : Nat} (a b : OrdinalD {suc n} lx) → (x y : a d< b ) → x ≡ y + lemma1 {lx} .(Φ lx) .(OSuc lx _) Φ< Φ< = refl + lemma1 {lx} (OSuc lx a) (OSuc lx b) (s< x) (s< y) = cong s< (lemma1 {lx} a b x y ) + open import Ordinals C-Ordinal : {n : Level} → Ordinals {suc n} @@ -216,6 +227,7 @@ ; <-osuc = <-osuc ; osuc-≡< = osuc-≡< ; TransFinite = TransFinite2 + ; o<-irr = OrdIrr ; Oprev-p = Oprev-p } ; isNext = record {
--- a/src/zorn.agda Fri Jun 17 18:45:08 2022 +0900 +++ b/src/zorn.agda Fri Jun 17 21:20:24 2022 +0900 @@ -667,8 +667,7 @@ ... | tri> ¬a ¬b c = sym *iso seq<x : {b : Ordinal } → (b<x : b o< x ) → * (SupF.chain (ZChain1.supf (prev b b<x {y} ay) b)) ≡ * (SupF.chain (supf0 b)) seq<x {b} b<x with trio< b x - ... | tri< a ¬b ¬c = ==→o≡ record { eq→ = ? ; eq← = ? } - -- cong (λ k → * (SupF.chain (ZChain1.supf (prev b k {y} ay) b)) ) {!!} -- b<x ≡ a + ... | tri< a ¬b ¬c = cong (λ k → * (SupF.chain (ZChain1.supf (prev b k {y} ay) b)) ) o<-irr -- b<x ≡ a ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) u-mono : ( a b : Ordinal ) → b o< x → a o< osuc b → (za : ZChain1 A y f a) (zb : ZChain1 A y f b) → ZChain.chain (ZChain1.zc za) ⊆' ZChain.chain (ZChain1.zc zb)