Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1209:09e4b32ece2e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 03 Mar 2023 21:31:12 +0900 |
parents | 151f4c971a50 |
children | 806109d79562 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 19 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Fri Mar 03 19:44:29 2023 +0900 +++ b/src/Tychonoff.agda Fri Mar 03 21:31:12 2023 +0900 @@ -213,7 +213,20 @@ FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP → (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F ) → UFLP {P} TP F UF -FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 ; P∋limit = ? ; is-limit = ufl00 } where +FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 + ; P∋limit = ufl10 ; is-limit = ufl00 } where + F∋P : odef (filter F) (& P) + F∋P with ultra-filter.ultra UF {od∅} (λ z az → ⊥-elim (¬x<0 (subst (λ k → odef k z) *iso az)) ) (λ z az → proj1 (subst (λ k → odef k z) *iso az ) ) + ... | case1 fp = ⊥-elim ( ultra-filter.proper UF fp ) + ... | case2 flp = subst (λ k → odef (filter F) k) (cong (&) (==→o≡ fl20)) flp where + fl20 : (P \ Ord o∅) =h= P + fl20 = record { eq→ = λ {x} lt → proj1 lt ; eq← = λ {x} lt → ⟪ lt , (λ lt → ⊥-elim (¬x<0 lt) ) ⟫ } + 0<P : o∅ o< & P + 0<P with trio< o∅ (& P) + ... | tri< a ¬b ¬c = a + ... | tri≈ ¬a b ¬c = ⊥-elim (ultra-filter.proper UF (subst (λ k → odef (filter F) k) (trans (sym b) (sym ord-od∅)) F∋P) ) + ... | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) + -- -- take closure of given filter elements -- @@ -251,6 +264,10 @@ o∅ ≡⟨ sym ord-od∅ ⟩ & od∅ ∎ ) (F∋sb (subst (λ k → Subbase k x) *iso sb )) )) where open ≡-Reasoning ... | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) + ufl10 : odef P (FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01) + ufl10 = FIP.L∋limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 {& P} ufl11 where + ufl11 : odef (* (& CF)) (& P) + ufl11 = subst (λ k → odef k (& P)) (sym *iso) record { z = _ ; az = F∋P ; x=ψz = sym (cong (&) (trans (cong (Cl TP) *iso) (ClL TP))) } -- -- so we have a limit -- @@ -264,7 +281,7 @@ ufl03 : {f v : Ordinal } → odef (filter F) f → Neighbor TP limit v → ¬ ( * f ∩ * v ) =h= od∅ -- because limit is in CF ufl03 {f} {v} ff nei fv=0 = ? pp : {v x : Ordinal} → Neighbor TP limit v → odef (* v) x → Power P ∋ (* x) - pp {v} {x} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; u⊆v = u⊆v } vx z pz = v⊆P ? + pp {v} {x} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; u⊆v = u⊆v } vx z pz = ? ufl00 : {v : Ordinal} → Neighbor TP limit v → * v ⊆ filter F ufl00 {v} nei {x} fx with ultra-filter.ultra UF (pp nei fx) (NEG P (pp nei fx)) ... | case1 fv = subst (λ k → odef (filter F) k) &iso fv