Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 628:0b5ff1c7032c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 20 Jun 2022 15:39:40 +0900 |
parents | 35d8aca1a2b7 |
children | 5b7b54fa4cf7 |
files | src/zorn.agda |
diffstat | 1 files changed, 53 insertions(+), 76 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jun 20 13:47:06 2022 +0900 +++ b/src/zorn.agda Mon Jun 20 15:39:40 2022 +0900 @@ -236,8 +236,6 @@ record ZChain ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) : Set (Level.suc n) where field supf : Ordinal → HOD - chain-mono : {x y : Ordinal} → x o≤ y → y o≤ z → supf x ⊆' supf y - f-total : {x y : Ordinal} → x o≤ z → IsTotalOrderSet (supf x) chain : HOD chain = supf z field @@ -250,9 +248,12 @@ → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b +-- chain-mono : {x y : Ordinal} → x o≤ y → y o≤ z → supf x ⊆' supf y +-- f-total : {x y : Ordinal} → x o≤ z → IsTotalOrderSet (supf x) + ZChainSupUnique : ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) ( a b : Ordinal ) - → ( za : ZChain A x f a ) → (zb : ZChain A x f b ) → a o< b → i o≤ a → ZChain.supf za i ≡ ZChain.supf zb i -ZChainSupUnique = ? + → ( za : ZChain A x f a ) → (zb : ZChain A x f b ) → {i : Ordinal } → a o< b → i o≤ a → ZChain.supf za i ≡ ZChain.supf zb i +ZChainSupUnique = {!!} record Maximal ( A : HOD ) : Set (Level.suc n) where field @@ -326,12 +327,12 @@ cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ zsup : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f) → (zc : ZChain A (& s) f (& A) ) → SUP A (ZChain.chain zc) - zsup f mf zc = supP (ZChain.chain zc) (ZChain.chain⊆A zc) ( ZChain.f-total zc {& A} {& A} o≤-refl ) + zsup f mf zc = supP (ZChain.chain zc) (ZChain.chain⊆A zc) {!!} A∋zsup : (nmx : ¬ Maximal A ) (zc : ZChain A (& s) (cf nmx) (& A) ) → A ∋ * ( & ( SUP.sup (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ))) A∋zsup nmx zc = subst (λ k → odef A (& k )) (sym *iso) ( SUP.A∋maximal (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) ) sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A (& s) f (& A) ) → SUP A (ZChain.chain zc) - sp0 f mf zc = supP (ZChain.chain zc) (ZChain.chain⊆A zc) (ZChain.f-total zc {& A} {& A} o≤-refl ) + sp0 f mf zc = supP (ZChain.chain zc) (ZChain.chain⊆A zc) {!!} zc< : {x y z : Ordinal} → {P : Set n} → (x o< y → P) → x o< z → z o< y → P zc< {x} {y} {z} {P} prev x<z z<y = prev (ordtrans x<z z<y) @@ -366,20 +367,21 @@ ... | case2 y<p = case2 (subst (λ k → * y < k ) (sym *iso) y<p ) -- λ {y} zy → subst (λ k → (y ≡ & k ) ∨ (y << & k)) ? (SUP.x<sup sp1 ? ) } z14 : f (& (SUP.sup (sp0 f mf zc))) ≡ & (SUP.sup (sp0 f mf zc)) - z14 with ZChain.f-total zc {& A} {& A} o≤-refl (subst (λ k → odef chain k) (sym &iso) (ZChain.f-next zc z12 )) z12 - ... | tri< a ¬b ¬c = ⊥-elim z16 where - z16 : ⊥ - z16 with proj1 (mf (& ( SUP.sup sp1)) ( SUP.A∋maximal sp1 )) - ... | case1 eq = ⊥-elim (¬b (subst₂ (λ j k → j ≡ k ) refl *iso (sym eq) )) - ... | case2 lt = ⊥-elim (¬c (subst₂ (λ j k → k < j ) refl *iso lt )) - ... | tri≈ ¬a b ¬c = subst ( λ k → k ≡ & (SUP.sup sp1) ) &iso ( cong (&) b ) - ... | tri> ¬a ¬b c = ⊥-elim z17 where - z15 : (* (f ( & ( SUP.sup sp1 ))) ≡ SUP.sup sp1) ∨ (* (f ( & ( SUP.sup sp1 ))) < SUP.sup sp1) - z15 = SUP.x<sup sp1 (subst (λ k → odef chain k ) (sym &iso) (ZChain.f-next zc z12 )) - z17 : ⊥ - z17 with z15 - ... | case1 eq = ¬b eq - ... | case2 lt = ¬a lt + z14 = {!!} + -- with ZChain.f-total zc {& A} {& A} o≤-refl (subst (λ k → odef chain k) (sym &iso) (ZChain.f-next zc z12 )) z12 + -- ... | tri< a ¬b ¬c = ⊥-elim z16 where + -- z16 : ⊥ + -- z16 with proj1 (mf (& ( SUP.sup sp1)) ( SUP.A∋maximal sp1 )) + -- ... | case1 eq = ⊥-elim (¬b (subst₂ (λ j k → j ≡ k ) refl *iso (sym eq) )) + -- ... | case2 lt = ⊥-elim (¬c (subst₂ (λ j k → k < j ) refl *iso lt )) + -- ... | tri≈ ¬a b ¬c = subst ( λ k → k ≡ & (SUP.sup sp1) ) &iso ( cong (&) b ) + -- ... | tri> ¬a ¬b c = ⊥-elim z17 where + -- z15 : (* (f ( & ( SUP.sup sp1 ))) ≡ SUP.sup sp1) ∨ (* (f ( & ( SUP.sup sp1 ))) < SUP.sup sp1) + -- z15 = SUP.x<sup sp1 (subst (λ k → odef chain k ) (sym &iso) (ZChain.f-next zc z12 )) + -- z17 : ⊥ + -- z17 with z15 + -- ... | case1 eq = ¬b eq + -- ... | case2 lt = ¬a lt -- ZChain contradicts ¬ Maximal -- @@ -398,18 +400,18 @@ -- create all ZChains under o< x -- - ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) → ((y : Ordinal) → y o< x → { y₁ : Ordinal} (ay : odef A y₁) - → ZChain A y₁ f y) → {y : Ordinal} (ay : odef A y) → ZChain A y f x - ind f mf x prev {y} ay with Oprev-p x + ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) + → ((z : Ordinal) → z o< x → ZChain A y f z) → ZChain A y f x + ind f mf {y} ay x prev with Oprev-p x ... | yes op = zc4 where -- -- we have previous ordinal to use induction -- px = Oprev.oprev op supf : Ordinal → HOD - supf = ZChain.supf (prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) ay) + supf = ZChain.supf (prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) ) zc : ZChain A y f (Oprev.oprev op) - zc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) ay + zc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) zc-b<x : (b : Ordinal ) → b o< x → b o< osuc px zc-b<x b lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) lt px<x : px o< x @@ -426,8 +428,7 @@ ; f-immediate = subst (λ k → {x₁ : Ordinal} {y₁ : Ordinal} → odef k x₁ → odef k y₁ → ¬ (* x₁ < * y₁) ∧ (* y₁ < * (f x₁)) ) seq (ZChain.f-immediate zc) ; chain∋x = subst (λ k → odef k y ) seq (ZChain.chain∋x zc) ; is-max = subst (λ k → {a b : Ordinal} → odef k a → b o< osuc x → (ab : odef A b) → - HasPrev A k ab f ∨ IsSup A k ab → * a < * b → odef k b ) seq is-max - ; chain-mono = mono ; f-total = {!!} } where + HasPrev A k ab f ∨ IsSup A k ab → * a < * b → odef k b ) seq is-max } where supf0 : Ordinal → HOD supf0 z with trio< z x ... | tri< a ¬b ¬c = supf z @@ -443,30 +444,6 @@ ... | tri< a ¬b ¬c = refl ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) - mono : {a b : Ordinal} → a o≤ b → b o< osuc x → - supf0 a ⊆' supf0 b - mono {a} {b} a≤b b<ox with osuc-≡< a≤b - ... | case1 refl = λ x → x - ... | case2 a<b with osuc-≡< b<ox - ... | case1 b=x = subst₂ (λ j k → j ⊆' k ) (seq<x a<x) nc00 ( ZChain.chain-mono zc a≤px <-osuc ) where - a<x : a o< x - a<x with osuc-≡< b<ox - ... | case1 b=x = subst (λ k → a o< k ) b=x a<b - ... | case2 b<x = ordtrans a<b b<x - a≤px : a o≤ px - a≤px = subst (λ k → a o< k ) (sym (Oprev.oprev=x op)) a<x - nc00 : supf px ≡ supf0 b - nc00 with trio< b x - ... | tri< a ¬b ¬c = ⊥-elim ( ¬b b=x ) - ... | tri≈ ¬a b ¬c = refl - ... | tri> ¬a ¬b c = ⊥-elim ( ¬b b=x ) - ... | case2 b<x = subst₂ (λ j k → j ⊆' k ) (seq<x a<x ) (seq<x b<x ) - ( ZChain.chain-mono zc a≤b (subst (λ k → b o< k) (sym (Oprev.oprev=x op)) b<x ) ) - where - a<x : a o< x - a<x with osuc-≡< b<ox - ... | case1 b=x = subst (λ k → a o< k ) b=x a<b - ... | case2 b<x = ordtrans a<b b<x zc4 : ZChain A y f x zc4 with ODC.∋-p O A (* x) @@ -489,7 +466,7 @@ ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc) ax ) ... | case1 is-sup = -- x is a sup of zc record { chain⊆A = {!!} ; f-next = {!!} - ; initial = {!!} ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} ; supf = supf0 ; chain-mono = mono ; f-total = {!!} } where + ; initial = {!!} ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} ; supf = supf0 } where sup0 : SUP A (ZChain.chain zc) sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where x21 : {y : HOD} → ZChain.chain zc ∋ y → (y ≡ * x) ∨ (y < * x) @@ -527,7 +504,7 @@ a<b : a < b a<b = ptrans (subst (λ k → a < k ) (sym *iso) a<sp ) ( subst₂ (λ j k → j < k ) refl *iso sp<b ) scmp : {a b : HOD} → odef schain (& a) → odef schain (& b) → Tri (a < b) (a ≡ b) (b < a ) - scmp {a} {b} (case1 za) (case1 zb) = ZChain.f-total zc {px} {px} o≤-refl za zb + scmp {a} {b} (case1 za) (case1 zb) = {!!} -- ZChain.f-total zc {px} {px} o≤-refl za zb scmp {a} {b} (case1 za) (case2 fb) = cmp za fb scmp (case2 fa) (case1 zb) with cmp zb fa ... | tri< a ¬b ¬c = tri> ¬c (λ eq → ¬b (sym eq)) a @@ -616,18 +593,17 @@ ... | case1 pr = ⊥-elim ( ¬fy<x record {y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = trans (trans &iso (sym b=x) ) (HasPrev.x=fy pr ) } ) ... | case2 b=sup = ⊥-elim ( ¬x=sup record { x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) - ... | no ¬ox = record { supf = supf0 ; chain-mono = u-mono ; f-total = u-total - ; chain⊆A = {!!} ; f-next = {!!} + ... | no ¬ox = record { supf = supf0 ; chain⊆A = {!!} ; f-next = {!!} ; initial = {!!} ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } where --- limit ordinal case record UZFChain (z : Ordinal) : Set n where -- Union of ZFChain from y which has maximality o< x field u : Ordinal u<x : u o< x - chain∋z : odef (ZChain.chain (prev u u<x {y} ay )) z + chain∋z : odef (ZChain.chain (prev u u<x )) z Uz⊆A : {z : Ordinal} → UZFChain z → odef A z - Uz⊆A {z} u = ZChain.chain⊆A ( prev (UZFChain.u u) (UZFChain.u<x u) {y} ay ) (UZFChain.chain∋z u) + Uz⊆A {z} u = ZChain.chain⊆A ( prev (UZFChain.u u) (UZFChain.u<x u) ) (UZFChain.chain∋z u) uzc : {z : Ordinal} → (u : UZFChain z) → ZChain A y f (UZFChain.u u) - uzc {z} u = prev (UZFChain.u u) (UZFChain.u<x u) {y} ay + uzc {z} u = prev (UZFChain.u u) (UZFChain.u<x u) Uz : HOD Uz = record { od = record { def = λ y → UZFChain y } ; odmax = & A ; <odmax = λ lt → subst (λ k → k o< & A ) &iso (c<→o< (subst (λ k → odef A k ) (sym &iso) (Uz⊆A lt))) } @@ -636,10 +612,10 @@ u-initial : {z : Ordinal} → odef Uz z → * y ≤ * z u-initial {z} u = ZChain.initial ( uzc u ) (UZFChain.chain∋z u) u-chain∋x : odef Uz y - u-chain∋x = record { u = y ; u<x = {!!} ; chain∋z = ZChain.chain∋x (prev y {!!} ay ) } + u-chain∋x = record { u = y ; u<x = {!!} ; chain∋z = ZChain.chain∋x (prev y {!!} ) } supf0 : Ordinal → HOD supf0 z with trio< z x - ... | tri< a ¬b ¬c = ZChain.supf (prev z a {y} ay) z + ... | tri< a ¬b ¬c = ZChain.supf (prev z a ) z ... | tri≈ ¬a b ¬c = Uz ... | tri> ¬a ¬b c = Uz seq : Uz ≡ supf0 x @@ -647,9 +623,9 @@ ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) ... | tri≈ ¬a b ¬c = refl ... | tri> ¬a ¬b c = refl - seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain.supf (prev b b<x {y} ay) b ≡ supf0 b + seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain.supf (prev b b<x ) b ≡ supf0 b seq<x {b} b<x with trio< b x - ... | tri< a ¬b ¬c = cong (λ k → ZChain.supf (prev b k {y} ay) b) o<-irr -- b<x ≡ a + ... | tri< a ¬b ¬c = cong (λ k → ZChain.supf (prev b k ) b) o<-irr -- b<x ≡ a ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) ord≤< : {x y z : Ordinal} → x o< z → z o≤ y → x o< y @@ -659,29 +635,30 @@ u-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → w o≤ x → supf0 z ⊆' supf0 w u-mono {z} {w} z≤w w≤x {i} with trio< z x | trio< w x ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = um00 where -- ZChain.chain-mono (prev w ? ay) ? ? lt - um00 : odef (ZChain.supf (prev z a ay) z) i → odef (ZChain.supf (prev w a₁ ay) w) i + um00 : odef (ZChain.supf (prev z a ) z) i → odef (ZChain.supf (prev w a₁ ) w) i um00 = {!!} - um01 : odef (ZChain.supf (prev z a ay) z) i → odef (ZChain.supf (prev z {!!} ay) w) i - um01 = ZChain.chain-mono (prev z a ay) {!!} {!!} + um01 : odef (ZChain.supf (prev z a ) z) i → odef (ZChain.supf (prev z {!!} ) w) i + um01 = {!!} -- ZChain.chain-mono (prev z a ay) {!!} {!!} ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = λ lt → record { u = z ; u<x = a ; chain∋z = lt } ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = ⊥-elim ( osuc-< w≤x c ) ... | tri≈ ¬a z=x ¬c | tri< w<x ¬b ¬c₁ = ⊥-elim ( osuc-< z≤w (subst (λ k → w o< k ) (sym z=x) w<x ) ) ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = λ lt → lt ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim ( osuc-< w≤x c ) -- o<> c ( ord≤< w≤x )) -- z≡w x o< w ... | tri> ¬a ¬b c | t = ⊥-elim ( osuc-< w≤x (ord≤< c z≤w ) ) -- x o< z → x o< w - u-total : {z : Ordinal} → z o≤ x → IsTotalOrderSet (supf0 z) - u-total {z} z<x ux uy with trio< z x - ... | t = {!!} - -- with trio< (UZFChain.u ux) (UZFChain.u uy) - -- ... | tri< a ¬b ¬c = ZChain.f-total (uzc uy) {!!} (u-mono (UZFChain.u ux) (UZFChain.u uy) - -- (UZFChain.u<x uy) (ordtrans a <-osuc ) (uzc ux) (uzc uy) (UZFChain.chain∋z ux)) (UZFChain.chain∋z uy) - -- ... | tri≈ ¬a b ¬c = ZChain.f-total (uzc ux) {!!} (UZFChain.chain∋z ux) (u-mono (UZFChain.u uy) (UZFChain.u ux) - -- (UZFChain.u<x ux) (subst (λ k → k o< osuc (UZFChain.u ux)) b <-osuc) (uzc uy) (uzc ux) (UZFChain.chain∋z uy)) - -- ... | tri> ¬a ¬b c = ZChain.f-total (uzc ux) {!!} (UZFChain.chain∋z ux) (u-mono (UZFChain.u uy) (UZFChain.u ux) - -- (UZFChain.u<x ux) (ordtrans c <-osuc) (uzc uy) (uzc ux) (UZFChain.chain∋z uy)) SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ya : odef A y) → ZChain A y f (& A) - SZ f mf = TransFinite {λ z → {y : Ordinal } → (ay : odef A y ) → ZChain A y f z } (ind f mf) (& A) + SZ f mf {y} ay = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) (& A) + + ind-mono : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) { y : Ordinal} (ay : odef A y) → (x : Ordinal) + → (prev : (z : Ordinal) → z o< x → ZChain A y f z) + → (z : Ordinal) → (z<x : z o< x) → ZChain.chain (prev z z<x ) ⊆' ZChain.chain ( ind f mf ay x prev ) + ind-mono f mf ay x prev z z<x = {!!} + + SZ-mono : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ya : odef A y) +o {a b : Ordinal } → a o< b → + ZChain.chain (TransFinite {λ z → ZChain A y f z } (ind f mf ay ) a ) ⊆' + ZChain.chain (TransFinite {λ z → ZChain A y f z } (ind f mf ay ) b ) + SZ-mono f mf {y} ay = ? zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM