Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1052:0b6cee971cba
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Dec 2022 11:38:13 +0900 |
parents | 8d25e368e26f |
children | a281ad683577 |
files | src/zorn.agda |
diffstat | 1 files changed, 12 insertions(+), 33 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Dec 09 11:10:41 2022 +0900 +++ b/src/zorn.agda Fri Dec 09 11:38:13 2022 +0900 @@ -475,6 +475,12 @@ ... | case2 lt = lt ... | case1 eq = ⊥-elim ( o<¬≡ eq sa<sb ) + supfeq : {a b : Ordinal } → UnionCF A f ay supf a ≡ UnionCF A f ay supf b → supf a ≡ supf b + supfeq = ? + + unioneq : {a b : Ordinal } → z o≤ supf a → supf a o≤ supf b → UnionCF A f ay supf a ≡ UnionCF A f ay supf b + unioneq = ? + -- cp : (mf< : <-monotonic-f A f) {b : Ordinal } → b o≤ z → supf b o≤ z → ChainP A f supf (supf b) -- the condition of cfcs is satisfied, this is obvious @@ -1189,47 +1195,20 @@ ... | tri≈ ¬a b ¬c = o≤-refl0 b ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , subst (λ k → a o< k) (sym (Oprev.oprev=x op)) ( ordtrans<-≤ a<b b≤x) ⟫ ) -- px o< a o< b o≤ x - spx<x : supf0 px o< x - spx<x = ? - spx<=sb : supf0 px ≤ sp1 - spx<=sb = MinSUP.x≤sup sup1 (case2 ⟪ init (ZChain.asupf zc) refl , ? ⟫ ) - sa<<sb : supf1 a << supf1 b - sa<<sb with osuc-≡< b≤x - ... | case2 b<x = subst₂ (λ j k → j << k ) (sym (sf1=sf0 ?)) (sym (sf1=sf0 ?)) ( ZChain.supf-mono< zc (zc-b<x _ b<x) - (subst₂ (λ j k → j o< k) (sf1=sf0 ?) (sf1=sf0 ?) sa<sb )) - ... | case1 b=x with osuc-≡< ( supf1-mono a≤px ) -- supf1 a ≤ supf1 px << sp1 - ... | case2 sa<spx = subst₂ (λ j k → j << k ) (sym (sf1=sf0 ?)) (sym (sf1=sp1 ?)) - ( ftrans<-≤ ( ZChain.supf-mono< zc o≤-refl (subst₂ (λ j k → j o< k) (sf1=sf0 ?) (sf1=sf0 ?) sa<spx)) spx<=sb ) - ... | case1 sa=spx with spx<=sb - ... | case2 lt = subst₂ (λ j k → j << k ) ? ? lt - ... | case1 eq = ? - -- supf1 a o≤ x - -- x o< supf1 a o< supf1 b -> UnionCF px ⊆ UnionCF a → supf0 px ≡ supf0 a → ⊥ - -- a o≤ supf1 a - sa<x : supf1 a o< x -- supf1 a o< supf1 x ≡ sp1 ( supf of fc (supf0 px) ∧ (supf0 px o< x) - sa<x with x<y∨y≤x (supf1 a) x - ... | case1 lt = lt - ... | case2 x≤sa = ⊥-elim ( <<-irr z27 sa<<sb ) where - z27 : supf1 b ≤ supf1 a - z27 = subst (λ k → supf1 b ≤ k ) ? (IsMinSUP.x≤sup (is-minsup ? ) ? ) - ssa=sa : supf1 a ≡ supf1 (supf1 a) -- supf0 a o≤ px - ssa=sa = sym ( sup=u ? ? ? ) - sa<b : supf1 a o< b -- supf1 (supf1 a) ≡ supf1 a o< supf1 b → inject supf1 a o< b - sa<b = supf-inject0 supf1-mono (subst (λ k → k o< supf1 b ) ? sa<sb ) z20 : w ≤ supf1 b z20 with trio< b px ... | tri< b<px ¬b ¬c = ZChain.order zc (o<→≤ b<px) (subst (λ k → k o< supf0 b) (sf1=sf0 (o<→≤ (ordtrans a<b b<px))) sa<sb) (fcup fc (o<→≤ (ordtrans a<b b<px))) ... | tri≈ ¬a b=px ¬c = IsMinSUP.x≤sup (ZChain.is-minsup zc (o≤-refl0 b=px)) z26 where - -- sa<b : supf1 a o< b -- px - -- sa<b = ? z26 : odef ( UnionCF A f ay supf0 b ) w - z26 with cfcs a<b b≤x sa<b fc + z26 with x<y∨y≤x (supf1 a) b + ... | case2 b≤sa = ? + ... | case1 sa<b with cfcs a<b b≤x sa<b fc ... | ⟪ ua , ch-init fc ⟫ = ⟪ ua , ch-init fc ⟫ ... | ⟪ ua , ch-is-sup u u<x su=u fc ⟫ = ⟪ ua , ch-is-sup u ? ? ? ⟫ - ... | tri> ¬a ¬b px<b = MinSUP.x≤sup sup1 (zc11 ( chain-mono f mf ay supf1 supf1-mono b≤x (cfcs a<b b≤x sa<b fc))) - -- sa<b : supf1 a o< b -- b ≡ x - -- sa<b = ? + ... | tri> ¬a ¬b px<b with x<y∨y≤x (supf1 a) b + ... | case1 sa<b = MinSUP.x≤sup sup1 (zc11 ( chain-mono f mf ay supf1 supf1-mono b≤x (cfcs a<b b≤x sa<b fc))) + ... | case2 b≤sa = ? -- x=b x o≤ sa UnionCF a ≡ UnionCF b → supf1 a ≡ supfb b → ⊥ ... | no lim with trio< x o∅ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a )