Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 964:0bee632db679
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Nov 2022 20:48:00 +0900 |
parents | a8c3ccf8f9d9 |
children | 1c1c6a6ed4fa |
files | src/zorn.agda |
diffstat | 1 files changed, 9 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Nov 04 20:27:31 2022 +0900 +++ b/src/zorn.agda Fri Nov 04 20:48:00 2022 +0900 @@ -488,7 +488,7 @@ supf = ZChain.supf zc field is-max : {a b : Ordinal } → (ca : odef (UnionCF A f mf ay supf z) a ) → supf b o< supf z → (ab : odef A b) - → HasPrev A (UnionCF A f mf ay supf z) f b ∨ IsMinSUP A (UnionCF A f mf ay supf b) f ab + → HasPrev A (UnionCF A f mf ay supf z) f b ∨ IsSUP A (UnionCF A f mf ay supf b) ab → * a < * b → odef ((UnionCF A f mf ay supf z)) b order : {b s z1 : Ordinal} → b o< & A → supf s o< supf b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b) @@ -663,7 +663,7 @@ zc-b<x {b} lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) (ZChain.supf-inject zc lt ) is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay supf x) a → ZChain.supf zc b o< ZChain.supf zc x → (ab : odef A b) → - HasPrev A (UnionCF A f mf ay supf x) f b ∨ IsMinSUP A (UnionCF A f mf ay supf b) f ab → + HasPrev A (UnionCF A f mf ay supf x) f b ∨ IsSUP A (UnionCF A f mf ay supf b) ab → * a < * b → odef (UnionCF A f mf ay supf x) b is-max {a} {b} ua b<x ab P a<b with ODC.or-exclude O P is-max {a} {b} ua b<x ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua ab has-prev a<b @@ -677,7 +677,7 @@ m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) m05 : ZChain.supf zc b ≡ b - m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) ⟪ record { x≤sup = λ {z} uz → IsMinSUP.x≤sup (proj2 is-sup) uz } , m04 ⟫ + m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) ⟪ record { x≤sup = λ {z} uz → IsSUP.x≤sup (proj2 is-sup) uz } , m04 ⟫ m08 : {z : Ordinal} → (fcz : FClosure A f y z ) → z <= ZChain.supf zc b m08 {z} fcz = ZChain.fcy<sup zc (o<→≤ b<A) fcz m09 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b @@ -688,11 +688,11 @@ ... | no lim = record { is-max = is-max ; order = order } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay supf x) a → ZChain.supf zc b o< ZChain.supf zc x → (ab : odef A b) → - HasPrev A (UnionCF A f mf ay supf x) f b ∨ IsMinSUP A (UnionCF A f mf ay supf b) f ab → + HasPrev A (UnionCF A f mf ay supf x) f b ∨ IsSUP A (UnionCF A f mf ay supf b) ab → * a < * b → odef (UnionCF A f mf ay supf x) b is-max {a} {b} ua sb<sx ab P a<b with ODC.or-exclude O P is-max {a} {b} ua sb<sx ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua ab has-prev a<b - is-max {a} {b} ua sb<sx ab P a<b | case2 is-sup with IsMinSUP.x≤sup (proj2 is-sup) (init-uchain A f mf ay ) + is-max {a} {b} ua sb<sx ab P a<b | case2 is-sup with IsSUP.x≤sup (proj2 is-sup) (init-uchain A f mf ay ) ... | case1 b=y = ⟪ subst (λ k → odef A k ) b=y ay , ch-init (subst (λ k → FClosure A f y k ) b=y (init ay refl )) ⟫ ... | case2 y<b = ⟪ ab , ch-is-sup b sb<sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where m09 : b o< & A @@ -709,7 +709,7 @@ chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) m05 : ZChain.supf zc b ≡ b - m05 = ZChain.sup=u zc ab (o<→≤ m09) ⟪ record { x≤sup = λ lt → IsMinSUP.x≤sup (proj2 is-sup) lt } , m04 ⟫ -- ZChain on x + m05 = ZChain.sup=u zc ab (o<→≤ m09) ⟪ record { x≤sup = λ lt → IsSUP.x≤sup (proj2 is-sup) lt } , m04 ⟫ -- ZChain on x m06 : ChainP A f mf ay supf b m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = m05 } @@ -1363,7 +1363,7 @@ asp : odef A sp asp = MinSUP.asm sp1 z10 : {a b : Ordinal } → (ca : odef chain a ) → supf b o< supf (& A) → (ab : odef A b ) - → HasPrev A chain f b ∨ IsMinSUP A (UnionCF A f mf as0 (ZChain.supf zc) b) f ab + → HasPrev A chain f b ∨ IsSUP A (UnionCF A f mf as0 (ZChain.supf zc) b) ab → * a < * b → odef chain b z10 = ZChain1.is-max (SZ1 f mf as0 zc (& A) ) z22 : sp o< & A @@ -1376,24 +1376,8 @@ z13 with MinSUP.x≤sup sp1 ( ZChain.chain∋init zc ) ... | case1 eq = ⊥-elim ( ne eq ) ... | case2 lt = lt - z19 : IsMinSUP A (UnionCF A f mf as0 (ZChain.supf zc) sp) f asp - z19 = record { x≤sup = z20 ; minsup = z21 ; not-hp = ZChain.IsMinSUP→NotHasPrev zc ? z20 ? } where - z23 : {z : Ordinal } → odef chain z → odef (UnionCF A f mf as0 (ZChain.supf zc) sp) z - z23 {z} ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ - z23 {z} ⟪ au , ch-is-sup u u<x is-sup fc ⟫ = ⟪ au , ch-is-sup u z24 is-sup fc ⟫ where - -- to prove sp is minsup , supf sp ≡ sp is necessary - -- to prove supf s ≡ sp , sp is minsup is necessary - z26 : supf sp ≡ sp - z26 = ZChain.sup=u zc asp (o<→≤ z22) ⟪ record { x≤sup = ? } , ? ⟫ - z25 : u <= sp - z25 = MinSUP.x≤sup sp1 ⟪ subst (λ k → odef A k) (ChainP.supu=u is-sup) (ZChain.asupf zc) - , ch-is-sup u u<x is-sup (init (ZChain.asupf zc) (ChainP.supu=u is-sup)) ⟫ - z24 : supf u o< supf sp - z24 = ? -- with ZChain.supf-<= zc z25 - z21 : {sup1 : Ordinal} → odef A sup1 - → ({z : Ordinal} → odef (UnionCF A f mf as0 (ZChain.supf zc) sp) z → (z ≡ sup1) ∨ (z << sup1)) - → sp o≤ sup1 - z21 {s} as s-sup = MinSUP.minsup sp1 as ( λ uz → s-sup (z23 uz) ) + z19 : IsSUP A (UnionCF A f mf as0 (ZChain.supf zc) sp) asp + z19 = record { x≤sup = z20 } where z20 : {y : Ordinal} → odef (UnionCF A f mf as0 (ZChain.supf zc) sp) y → (y ≡ sp) ∨ (y << sp) z20 {y} zy with MinSUP.x≤sup sp1 (subst (λ k → odef chain k ) (sym &iso) (chain-mono f mf as0 supf (ZChain.supf-mono zc) (o<→≤ z22) zy ))