Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 760:0dc7999b1d50
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 Jul 2022 06:41:40 +0900 |
parents | 944f50265914 |
children | 9307f895891c |
files | src/zorn.agda |
diffstat | 1 files changed, 10 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Jul 24 19:01:24 2022 +0900 +++ b/src/zorn.agda Mon Jul 25 06:41:40 2022 +0900 @@ -368,6 +368,8 @@ <-irr0 {a} {b} A∋a A∋b = <-irr z07 : {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) + z09 : {b : Ordinal } { A : HOD } → odef A b → b o< & A + z09 {b} {A} ab = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab)) s : HOD s = ODC.minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) as : A ∋ * ( & s ) @@ -473,11 +475,17 @@ ... | ch-is-sup u u≤x is-sup fc with trio< u px ... | tri< a ¬b ¬c = ⟪ proj1 ua , ch-is-sup u (o<→≤ a) is-sup fc ⟫ -- u o< osuc x ... | tri≈ ¬a u=px ¬c = ⟪ proj1 ua , ch-is-sup u (o≤-refl0 u=px) is-sup fc ⟫ - ... | tri> ¬a ¬b c = ? -- u = x + ... | tri> ¬a ¬b c = ? -- u = x → u = sup → (b o< x → b < a ) → ⊥ m04 : odef (UnionCF A f mf ay (ZChain.supf zc) px) b m04 = ZChain1.is-max (prev px px<x) m03 b<px ab (case2 record {x<sup = λ {z} lt → IsSup.x<sup is-sup (chain-mono2 x ( o<→≤ (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc )) o≤-refl lt) } ) a<b - ... | tri≈ ¬a b=px ¬c = ⟪ ab , ch-is-sup b (o<→≤ b<x) ? (subst (λ k → FClosure A f k b) ? (init ab)) ⟫ -- b = px case, u = px u< osuc x + ... | tri≈ ¬a b=px ¬c = ⟪ ab , ch-is-sup b (o<→≤ b<x) m06 (subst (λ k → FClosure A f k b) m05 (init ab)) ⟫ where + m06 : ChainP A f mf ay (ZChain.supf zc) b b + m06 = ? + m05 : b ≡ ZChain.supf zc b + m05 = sym ( ZChain.sup=u zc {b} {ab} (z09 ab) + record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono2 x (osucc b<x) o≤-refl uz ) } ) + -- b = px case, u = px u< osuc x ... | no lim = record { is-max = is-max } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) →