Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 602:0ef3ef93c5c3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Jun 2022 14:36:45 +0900 |
parents | 8b2a4af84e25 |
children | d68114d45d2f |
files | src/zorn.agda |
diffstat | 1 files changed, 13 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jun 14 11:08:15 2022 +0900 +++ b/src/zorn.agda Tue Jun 14 14:36:45 2022 +0900 @@ -241,7 +241,6 @@ record FSup ( A : HOD ) ( f : Ordinal → Ordinal ) (p c : Ordinal) ( x : Ordinal ) : Set n where field sup : (z : Ordinal) → FClosure A f p z → * z < * x - chain∋x : odef (* c) x chain∋p : odef (* c) p data Fc∨sup (A : HOD) {y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) (c : Ordinal) : (x : Ordinal) → Set n where @@ -261,7 +260,7 @@ is-max : {a b : Ordinal } → (ca : odef chain a ) → b o< osuc z → (ab : odef A b) → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b - chain∋sup : (s : HOD) → s ⊆' chain → {b : Ordinal} (ab : odef A b) → IsSup A s ab → odef chain b + chain∋sup : (s : HOD) → s ⊆' chain → {b : Ordinal} (ab : odef A b) → b o< z → IsSup A s ab → odef chain b fc∨sup : {c : Ordinal } → ( ca : odef chain c ) → Fc∨sup A (chain⊆A chain∋x) f (& chain) c @@ -419,6 +418,14 @@ zc0-b<x : (b : Ordinal ) → b o< x → b o< osuc px zc0-b<x b lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) lt + ys : HOD + ys = record { od = record { def = λ x → FClosure A f y x } ; odmax = & A ; <odmax = {!!} } + init-chain : ZChain A y f y + init-chain = record { chain = ys ; chain⊆A = λ fx → A∋fc y f mf fx + ; f-total = i-total ; f-next = λ {x} sx → fsuc x sx ; chain∋sup = {!!} + ; initial = {!!} ; f-immediate = {!!} ; chain∋x = init ay ; is-max = {!!} ; fc∨sup = {!!} } where + i-total : IsTotalOrderSet ys + i-total fa fb = subst₂ (λ a b → Tri (a < b) (a ≡ b) (b < a ) ) *iso *iso (fcn-cmp y f mf fa fb) zc4 : ZChain A y f x zc4 with ODC.∋-p O A (* x) ... | no noax = -- ¬ A ∋ p, just skip @@ -601,8 +608,6 @@ um01 with FC ... | Finit i=y = subst (λ k → odef (chain zb) k ) (sym i=y) ( chain∋x zb ) ... | Fsup {p} {i} p<i pFC sup = cb∋i where - ca∋i : odef (chain za) i - ca∋i = subst (λ k → odef k i) *iso (FSup.chain∋x sup) i-asup : (z : Ordinal) → FClosure A f p z → * z < * i i-asup = FSup.sup sup um06 : odef (chain za) p @@ -614,11 +619,11 @@ um08 : odef (chain zb) p um08 = previ p p<i um06 cl : HOD - cl = record { od = record { def = λ x → FClosure A f p x } ; odmax = & A ; <odmax = λ lt → cla lt } where - cla : {i2 : Ordinal} → FClosure A f p i2 → i2 o< & A - cla {i2} cl = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k) (sym &iso) (A∋fc p f mf cl) ) ) + cl = record { od = record { def = λ x → FClosure A f p x } ; odmax = & A ; <odmax = cl<A } where + cl<A : {i2 : Ordinal} → FClosure A f p i2 → i2 o< & A + cl<A {i2} cl = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k) (sym &iso) (A∋fc p f mf cl) ) ) cb∋i : odef (chain zb) i - cb∋i = ZChain.chain∋sup zb cl (λ {i2} lt → um07 i2 lt) (chain⊆A za zai) record { x<sup = λ {i2} cl → case2 (i-asup i2 cl) } + cb∋i = ZChain.chain∋sup zb cl (λ {i2} lt → um07 i2 lt) (chain⊆A za zai) {!!} record { x<sup = λ {i2} cl → case2 (i-asup i2 cl) } ... | Fc {p} {i} p<i pFC FC with (FChain.fc∨sup FC) ... | fc = um02 i fc where um02 : (i2 : Ordinal) → FClosure A f p i2 → odef (chain zb) i2