Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 25:0f3d98e97593
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 May 2019 16:28:10 +0900 |
parents | 3186bbee99dd |
children | a53ba59c5bda |
files | constructible-set.agda |
diffstat | 1 files changed, 18 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/constructible-set.agda Sat May 18 16:03:10 2019 +0900 +++ b/constructible-set.agda Sat May 18 16:28:10 2019 +0900 @@ -182,11 +182,12 @@ c∅ : {n : Level} → ConstructibleSet c∅ {n} = record {α = o∅ ; constructible = λ x → Lift n ⊥ } -record SupR {n m : Level} {S : Set n} ( _≤_ : S → S → Set m ) (ψ : S → S ) (X : S) : Set (n ⊔ m) where +record SupR {n m : Level} {S : Set n} ( _≤_ : S → S → Set m ) (ψ : S → S ) (X : S) : Set ((suc n) ⊔ m) where field sup : S smax : ∀ { x : S } → x ≤ X → ψ x ≤ sup suniq : {max : S} → ( ∀ { x : S } → x ≤ X → ψ x ≤ max ) → max ≤ sup + repl : ( x : Ordinal {n} ) → Set n open SupR @@ -200,6 +201,7 @@ sup (Sup {n} ψ X ) = suptraverse X (c∅ {n}) ψ smax (Sup ψ X ) = {!!} suniq (Sup ψ X ) = {!!} +repl (Sup ψ X ) = {!!} open import Data.Unit open SupR @@ -214,25 +216,26 @@ ; Union = Union ; Power = {!!} ; Select = Select - ; Replace = {!!} + ; Replace = Replace ; infinite = {!!} ; isZF = {!!} } where - conv : {n : Level} → (ConstructibleSet {n} → Set (suc (suc n))) → ConstructibleSet → Set (suc n) - conv {n} ψ x with ψ x - ... | t = Lift ( suc n ) ⊤ Select : (X : ConstructibleSet {n}) → (ConstructibleSet {n} → Set (suc n)) → ConstructibleSet {n} - Select X ψ = record { α = α X ; constructible = λ x → {!!} } -- ψ (record { α = x ; constructible = λ x → constructible X x } ) } + Select X ψ = record { α = α X ; constructible = λ x → select x } where + select : Ordinal → Set n + select x with ψ (record { α = x ; constructible = λ x → constructible X x }) + ... | t = Lift n ⊤ Replace : (X : ConstructibleSet {n} ) → (ConstructibleSet → ConstructibleSet) → ConstructibleSet - Replace X ψ = record { α = α (sup supψ) ; constructible = λ x → {!!} } where - supψ : SupR (λ x a → (α a ≡ α x) ∨ (a ∋ x)) ψ X - supψ = Sup ψ X - repl : Ordinal {n} → Set (suc n) - repl x = {!!} - conv1 : (Ordinal {n} → Set n) → Ordinal {n} → Set n - conv1 ψ x with ψ - ... | t = Lift n ⊤ + Replace X ψ = record { α = α (sup supψ) ; constructible = λ x → repl1 x } where + supψ : SupR (λ x a → (α a ≡ α x) ∨ (a ∋ x)) ψ X + supψ = Sup ψ X + repl1 : Ordinal {suc n} → Set n + repl1 x with repl supψ x + ... | t = Lift n ⊤ _,_ : ConstructibleSet {n} → ConstructibleSet → ConstructibleSet - a , b = record { α = maxα (α a) (α b) ; constructible = λ x → {!!} } -- ((x ≡ α a ) ∨ ( x ≡ α b )) } + a , b = record { α = maxα (α a) (α b) ; constructible = a∨b } where + a∨b : Ordinal {suc n} → Set n + a∨b x with (x ≡ α a ) ∨ ( x ≡ α b ) + ... | t = Lift n ⊤ Union : ConstructibleSet → ConstructibleSet Union a = {!!}