Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 665:1002866230b8
new TransFinite induction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 04 Jul 2022 07:41:30 +0900 |
parents | 6a8d13b02a50 |
children | 431d074311f5 |
files | src/zorn.agda |
diffstat | 1 files changed, 18 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Jul 03 18:59:49 2022 +0900 +++ b/src/zorn.agda Mon Jul 04 07:41:30 2022 +0900 @@ -289,7 +289,7 @@ chain : HOD chain-uniq : Chain A f mf ay z chain -record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) (zc0 : ZChain1 A f mf ay (& A) ) ( z : Ordinal ) : Set (Level.suc n) where +record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) ( z : Ordinal ) (zc0 : ZChain1 A f mf ay z ) : Set (Level.suc n) where chain : HOD chain = ZChain1.chain zc0 field @@ -365,7 +365,7 @@ cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx ) cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ - sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain1 A f mf as0 (& A) ) (zc : ZChain A f mf as0 zc0 (& A) ) + sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain1 A f mf as0 (& A) ) (zc : ZChain A f mf as0 (& A) zc0 ) (total : IsTotalOrderSet (ZChain.chain zc) ) → SUP A (ZChain.chain zc) sp0 f mf zc0 zc total = supP (ZChain.chain zc) (ZChain.chain⊆A zc) total zc< : {x y z : Ordinal} → {P : Set n} → (x o< y → P) → x o< z → z o< y → P @@ -374,7 +374,7 @@ --- --- the maximum chain has fix point of any ≤-monotonic function --- - fixpoint : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain1 A f mf as0 (& A)) (zc : ZChain A f mf as0 zc0 (& A) ) + fixpoint : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain1 A f mf as0 (& A)) (zc : ZChain A f mf as0 (& A) zc0 ) → (total : IsTotalOrderSet (ZChain.chain zc) ) → f (& (SUP.sup (sp0 f mf zc0 zc total ))) ≡ & (SUP.sup (sp0 f mf zc0 zc total)) fixpoint f mf zc0 zc total = z14 where @@ -423,7 +423,7 @@ -- ZChain forces fix point on any ≤-monotonic function (fixpoint) -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain -- - z04 : (nmx : ¬ Maximal A ) → (zc0 : ZChain1 A (cf nmx) (cf-is-≤-monotonic nmx) as0 (& A)) (zc : ZChain A (cf nmx) (cf-is-≤-monotonic nmx) as0 zc0 (& A)) + z04 : (nmx : ¬ Maximal A ) → (zc0 : ZChain1 A (cf nmx) (cf-is-≤-monotonic nmx) as0 (& A)) (zc : ZChain A (cf nmx) (cf-is-≤-monotonic nmx) as0 (& A) zc0 ) → IsTotalOrderSet (ZChain.chain zc) → ⊥ z04 nmx zc0 zc total = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.A∋maximal sp1 )))) (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) ) @@ -477,16 +477,16 @@ chainq z z<x = ZChain1.chain-uniq ( prev z z<x) sc4 : ZChain1 A f mf ay x sc4 with ODC.∋-p O A (* x) - ... | no noax = record { chain = UnionCF A x chainf ; chain-uniq = ? } -- ch-noax-union ¬ox (subst (λ k → ¬ odef A k) &iso noax) ? } + ... | no noax = record { chain = UnionCF A x chainf ; chain-uniq = ch-noax-union ¬ox (subst (λ k → ¬ odef A k) &iso noax) ? ? } ... | yes ax with ODC.p∨¬p O ( HasPrev A (UnionCF A x chainf) ax f ) - ... | case1 pr = record { chain = UnionCF A x chainf ; chain-uniq = ? } -- ch-hasprev-union ¬ox (subst (λ k → odef A k) &iso ax) ? ? } + ... | case1 pr = record { chain = UnionCF A x chainf ; chain-uniq = ch-hasprev-union ¬ox (subst (λ k → odef A k) &iso ax) ? ? ? } ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (UnionCF A x chainf) ax ) ... | case1 is-sup = ? ... | case2 ¬x=sup = ? - ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : ZChain1 A f mf ay (& A)) - → ((z : Ordinal) → z o< x → ZChain A f mf ay zc0 z) → ZChain A f mf ay zc0 x - ind f mf {y} ay x zc0 prev with Oprev-p x + ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) + → ((z : Ordinal) → z o< x → (zc1 : ZChain1 A f mf ay z) → ZChain A f mf ay z zc1 ) → (zc0 : ZChain1 A f mf ay x ) → ZChain A f mf ay x zc0 + ind f mf {y} ay x prev zc0 with Oprev-p x ... | yes op = zc4 where -- -- we have previous ordinal to use induction @@ -494,8 +494,8 @@ px = Oprev.oprev op supf : Ordinal → HOD supf x = ZChain1.chain zc0 - zc : ZChain A f mf ay zc0 (Oprev.oprev op) - zc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) + zc : ZChain A f mf ay (Oprev.oprev op) ? + zc = ? -- prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) zc-b<x : (b : Ordinal ) → b o< x → b o< osuc px zc-b<x b lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) lt px<x : px o< x @@ -505,7 +505,7 @@ -- no-extenion : ( {a b : Ordinal} → odef (ZChain.chain zc) a → b o< osuc x → (ab : odef A b) → HasPrev A (ZChain.chain zc) ab f ∨ IsSup A (ZChain.chain zc) ab → - * a < * b → odef (ZChain.chain zc) b ) → ZChain A f mf ay {!!} x + * a < * b → odef (ZChain.chain zc) b ) → ZChain A f mf ay x {!!} no-extenion is-max = record { chain⊆A = {!!} -- subst (λ k → k ⊆' A ) {!!} (ZChain.chain⊆A zc) ; initial = subst (λ k → {y₁ : Ordinal} → odef k y₁ → * y ≤ * y₁ ) {!!} (ZChain.initial zc) ; f-next = subst (λ k → {a : Ordinal} → odef k a → odef k (f a) ) {!!} (ZChain.f-next zc) @@ -529,7 +529,7 @@ ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) - zc4 : ZChain A f mf ay zc0 x + zc4 : ZChain A f mf ay x zc0 zc4 with ODC.∋-p O A (* x) ... | no noax = no-extenion zc1 where -- ¬ A ∋ p, just skip zc1 : {a b : Ordinal} → odef (ZChain.chain zc) a → b o< osuc x → (ab : odef A b) → @@ -662,8 +662,8 @@ ; initial = {!!} ; chain∋init = {!!} ; is-max = {!!} } where --- limit ordinal case supf : Ordinal → HOD supf x = ZChain1.chain zc0 - uzc : {z : Ordinal} → (u : UChain x {!!} z) → ZChain A f mf ay zc0 (UChain.u u) - uzc {z} u = prev (UChain.u u) (UChain.u<x u) + uzc : {z : Ordinal} → (u : UChain x {!!} z) → ZChain A f mf ay (UChain.u u) ? + uzc {z} u = ? -- prev (UChain.u u) (UChain.u<x u) Uz : HOD Uz = record { od = record { def = λ z → odef A z ∧ ( UChain z {!!} x ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = {!!} } u-next : {z : Ordinal} → odef Uz z → odef Uz (f z) @@ -703,8 +703,8 @@ SZ0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → (x : Ordinal) → ZChain1 A f mf ay x SZ0 f mf ay x = TransFinite {λ z → ZChain1 A f mf ay z} (sind f mf ay ) x - SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain A f mf ay (SZ0 f mf ay (& A)) (& A) - SZ f mf {y} ay = TransFinite {λ z → ZChain A f mf ay (SZ0 f mf ay (& A)) z } (λ x → ind f mf ay x (SZ0 f mf ay (& A)) ) (& A) + SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain A f mf ay (& A) (SZ0 f mf ay (& A)) + SZ f mf {y} ay = TransFinite {λ z → (zc1 : ZChain1 A f mf ay z ) → ZChain A f mf ay z zc1 } (λ x zc0 → ind f mf ay x zc0 ) (& A) (SZ0 f mf ay (& A)) zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM @@ -724,7 +724,7 @@ zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ zc0 : (x : Ordinal) → ZChain1 A (cf nmx) (cf-is-≤-monotonic nmx) as0 x zc0 x = TransFinite {λ z → ZChain1 A (cf nmx) (cf-is-≤-monotonic nmx) as0 z} (sind (cf nmx) (cf-is-≤-monotonic nmx) as0) x - zorn04 : ZChain A (cf nmx) (cf-is-≤-monotonic nmx) as0 (zc0 (& A)) (& A) + zorn04 : ZChain A (cf nmx) (cf-is-≤-monotonic nmx) as0 (& A) (zc0 (& A)) zorn04 = SZ (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) total : IsTotalOrderSet (ZChain.chain zorn04) total {a} {b} = zorn06 where