Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 474:100ceb0fbada
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 31 Mar 2022 10:02:23 +0900 |
parents | d61f4a89c99e |
children | 30da20261771 |
files | src/ODC.agda |
diffstat | 1 files changed, 14 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ODC.agda Wed Mar 30 23:44:49 2022 +0900 +++ b/src/ODC.agda Thu Mar 31 10:02:23 2022 +0900 @@ -158,16 +158,18 @@ isSomeA : A ∋ someA isSomeA = x∋minimal A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) HasMaximal : HOD - HasMaximal = record { od = record { def = λ x → (m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m))} ; odmax = & A ; <odmax = {!!} } where + HasMaximal = record { od = record { def = λ x → odef A x → (m : Ordinal) → odef A m → ¬ (* x < * m)} ; odmax = & A ; <odmax = {!!} } where z07 : {y : Ordinal} → ((m : Ordinal) → odef A y ∧ odef A m ∧ (¬ (* y < * m))) → y o< & A z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 (p (& someA)) ))) + no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → odef A x → ((m : Ordinal) → odef A m → ¬ (* x < * m) ) → ⊥ + no-maximum nomx x ax P = ¬x<0 (eq→ nomx {x} (λ ax m am → P m am )) Gtx : { x : HOD} → A ∋ x → HOD Gtx {x} ax = record { od = record { def = λ y → odef A y → (x < (* y)) ∧ ( (& x) o< y ) } ; odmax = & A ; <odmax = {!!} } + no-gtx : { x : HOD} → (ax : A ∋ x ) → Gtx ax =h= od∅ → (( y : Ordinal) → odef A y → (x < (* y)) ∧ ( (& x) o< y )) → ⊥ + no-gtx {x} ax nogt P = ¬x<0 (eq→ nogt (λ am → P (& x) am )) z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a z01 {a} {b} A∋a A∋b (case2 a<b) b<a = proj1 (PO (me A∋b) (me A∋a)) b<a ⟪ a<b , (λ b=a → proj1 (proj2 (PO (me A∋b) (me A∋a)) b=a ) b<a ) ⟫ - no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → ((m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m)) ) → ⊥ - no-maximum nomx x P = ¬x<0 (eq→ nomx (λ m am → P m am )) ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (ZChain.B z) _<_ ) ZChain→¬SUP z sp = ⊥-elim (z02 (ZChain.fb z (SUP.A∋maximal sp)) (ZChain.B∋fb z _ (SUP.A∋maximal sp)) (ZChain.¬x≤sup z _ (SUP.A∋maximal sp) z03 )) where z03 : & (SUP.sup sp) o< osuc (& A) @@ -197,15 +199,13 @@ zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) z06 : ZChain A x _<_ z06 with is-o∅ (& (Gtx ax)) - ... | yes nogt = ⊥-elim (no-maximum nomx x z06-is-maximal ) where - z06-is-maximal : (m : Ordinal ) → odef A m → odef A x ∧ (¬ ( * x < * m )) - z06-is-maximal m am = ⟪ subst (λ k → odef A k) &iso ax , {!!} ⟫ -- ⟪ subst (λ k → odef A k) &iso ax , z07 m am ⟫ where - -- λ x<m → proj1 (PO (me ax) (me (subst (λ k → odef A k) (sym &iso) am))) x<m {!!} ) ⟫ where - -- m<x : {!!} - -- m<x = {!!} - -- z07 : ¬ ( * m < * x ) - -- z07 = {!!} -- proj1 ((eq← (≡o∅→=od∅ nogt)) {m} {!!} {!!}) - -- proj1 (PO (me ax) (me (subst (λ k → odef A k) (sym &iso) am))) x<m ⟪ {!!} , {!!} ⟫ ) ⟫ + ... | yes nogt = ⊥-elim (no-maximum nomx x (subst (λ k → odef A k) &iso ax) z06-is-maximal ) where + z06-is-maximal : (m : Ordinal ) → odef A m → ¬ ( * x < * m ) + z06-is-maximal m am = z07 where + z07 : ¬ ( * x < * m ) + z07 x<m = proj1 (PO (me ax) (me (subst (λ k → odef A k) (sym &iso) am))) x<m ⟪ {!!} , {!!} ⟫ + z08 : ( ( y : Ordinal) → odef A y → (* x < (* y)) ∧ ( (& (* x)) o< y )) → ⊥ + z08 p = no-gtx ax (≡o∅→=od∅ nogt) (λ y ay → p y ay ) ... | no not = record { B = ZChain.B (prev px (subst (λ k → px o< k ) (Oprev.oprev=x op) <-osuc)) , * x ; B⊆A = {!!} ; total = {!!} ; fb = {!!} ; B∋fb = {!!} ; ¬x≤sup = {!!} } -- minimal (Gtx ax) (λ eq → not (=od∅→≡o∅ eq)) @@ -219,9 +219,9 @@ zorn03 : odef HasMaximal ( & ( minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ) ) zorn03 = x∋minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) zorn01 : A ∋ minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) - zorn01 = proj1 (zorn03 (& someA) isSomeA ) + zorn01 = {!!} -- proj1 (zorn03 ? ? (& someA) isSomeA ) zorn02 : {x : HOD} → A ∋ x → ¬ (minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) - zorn02 {x} ax m<x = proj2 (zorn03 (& x) ax) (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x ) + zorn02 {x} ax m<x = {!!} -- proj2 (zorn03 (& x) ax) (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x ) ... | yes ¬Maximal = ⊥-elim ( ZChain→¬SUP (z (& A) (≡o∅→=od∅ ¬Maximal)) ( supP B (ZChain.B⊆A (z (& A) (≡o∅→=od∅ ¬Maximal))) (ZChain.total (z (& A) (≡o∅→=od∅ ¬Maximal))) )) where z : (x : Ordinal) → HasMaximal =h= od∅ → ZChain A x _<_ z x nomx = TransFinite (ind nomx) x