Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 835:106492766e36
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 23 Aug 2022 15:16:06 +0900 |
parents | 6bf0899a6150 |
children | d72bcf8552bb |
files | src/zorn.agda |
diffstat | 1 files changed, 41 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Aug 23 11:25:55 2022 +0900 +++ b/src/zorn.agda Tue Aug 23 15:16:06 2022 +0900 @@ -695,6 +695,19 @@ supf0 = ZChain.supf zc + sup1 : SUP A (UnionCF A f mf ay supf0 px) + sup1 = supP pchain pchain⊆A ptotal + sp1 = & (SUP.sup sup1 ) + supf1 : Ordinal → Ordinal + supf1 z with trio< z px + ... | tri< a ¬b ¬c = ZChain.supf zc z + ... | tri≈ ¬a b ¬c = sp1 + ... | tri> ¬a ¬b c = sp1 + + pchain1 : HOD + pchain1 = UnionCF A f mf ay supf1 x + + -- if previous chain satisfies maximality, we caan reuse it -- -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x @@ -774,29 +787,39 @@ pzc : (z : Ordinal) → z o< x → ZChain A f mf ay z pzc z z<x = prev z z<x - record Usupf : Set n where - field - umax : Ordinal → Ordinal - umax<x : {z : Ordinal } → umax z o< x - supf : Ordinal → Ordinal - supf z = ZChain.supf (pzc (osuc (umax z)) (ob<x lim umax<x )) z - field - supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y + ysp = & (SUP.sup (ysup f mf ay)) - initial-segment : {a b z : Ordinal } → (a<x : a o< x ) → (b<x : b o< x ) - → a o≤ b - → ZChain.supf (pzc (osuc a) (ob<x lim a<x )) z o≤ ZChain.supf (pzc (osuc b) (ob<x lim b<x )) z + initial-segment : {a b z : Ordinal } → (a<x : a o< x) ( b<x : b o< x) → a o< b → z o≤ a + → ZChain.supf (pzc (osuc a) (ob<x lim a<x )) z ≡ ZChain.(umax z)) (ob<x lim b<x )) z initial-segment = ? - is01 : {a b : Ordinal } → (a<x : a o< x ) → (b<x : b o< x ) - → a o≤ b - UnionCF A f mf ay (ZChain.supf (pzc (osuc a) (ob<x lim a<x ))) x ⊆' - UnionCF A f mf ay (ZChain.supf (pzc (osuc b) (ob<x lim b<x ))) x - is01 = ? + initial-segment1 : {a b z : Ordinal } → (a<x : a o< x) ( b<x : b o< x) → a o< b → + → ZChain.supf (pzc (osuc a) (ob<x lim a<x )) x ≡ ZChain.(umax z)) (ob<x lim b<x )) x + initial-segment1 = ? + + supf0 : Ordinal → Ordinal + supf0 z with trio< z x + ... | tri< a ¬b ¬c = ZChain.supf (pzc (osuc z) (ob<x lim a)) z + ... | tri≈ ¬a b ¬c = {!!} + ... | tri> ¬a ¬b c = {!!} + + pchain0 : HOD + pchain0 = UnionCF A f mf ay supf0 x + + ptotal0 : IsTotalOrderSet pchain0 + ptotal0 {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where + uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) + uz01 = chain-total A f mf ay supf0 ( (proj2 ca)) ( (proj2 cb)) + + usup : SUP A pchain0 + usup = supP pchain0 (λ lt → proj1 lt) ptotal0 + spu = & (SUP.sup usup) supf1 : Ordinal → Ordinal - supf1 z = ? - -- ... | tri< a ¬b ¬c = ZChain.supf (pzc (osuc z) (ob<x lim a)) z + supf1 z with trio< z x + ... | tri< a ¬b ¬c = ZChain.supf (pzc (osuc z) (ob<x lim a)) z + ... | tri≈ ¬a b ¬c = {!!} + ... | tri> ¬a ¬b c = {!!} pchain : HOD pchain = UnionCF A f mf ay supf1 x