Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 780:10a036aeb688
sup=SUP is no good
order and csupf has circular dependency
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Jul 2022 17:57:15 +0900 |
parents | 9e34893d9a03 |
children | 460df9965d63 |
files | src/zorn.agda |
diffstat | 1 files changed, 18 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Jul 29 02:38:37 2022 +0900 +++ b/src/zorn.agda Sun Jul 31 17:57:15 2022 +0900 @@ -283,6 +283,10 @@ -- Union of supf z which o< x -- +-- data DChain ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) : (z : Ordinal) → Set n where +-- dinit : DChain f mf ay (& (SUP.sup (ysup f mf ay))) +-- dsuc : {u : Ordinal } → (au : odef A u) → DChain f mf ay u → DChain f mf ay ( & (SUP.sup (ysup f mf au)) ) + data UChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) (supf : Ordinal → Ordinal) (x : Ordinal) : (z : Ordinal) → Set n where ch-init : {z : Ordinal } (fc : FClosure A f y z) → UChain A f mf ay supf x z @@ -310,6 +314,9 @@ f-next : {a : Ordinal } → odef chain a → odef chain (f a) f-total : IsTotalOrderSet chain + sup : SUP A chain + supf=sup : supf z ≡ & (SUP.sup sup) + supf-mono : { a b : Ordinal } → a o< b → supf a o≤ supf b csupf : (z : Ordinal ) → odef chain (supf z) sup=u : {b : Ordinal} → (ab : odef A b) → b o< z → IsSup A (UnionCF A f mf ay supf (osuc b)) ab → supf b ≡ b @@ -680,25 +687,6 @@ -- create all ZChains under o< x -- - record FChain (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) (x : Ordinal) : Set n where - field - supf : Ordinal → Ordinal - fcy<sup : { z : Ordinal ) → FClosure A f y z → z <= supf x - is-sup : ( z : Ordinal ) → (z<x : z o< x ) → { z1 : Ordinal } → FClosure A f (supf z) z1 → z1 <= supf x - is-minsup : ( x1 : Ordinal ) → - (( z : Ordinal ) → (z<x : z o< x ) → { z1 : Ordinal } → FClosure A f (supf z) z1 → z1 <= x1 ) → supf x <= x1 - order : {b s z1 : Ordinal} → b o< z → supf s o< supf b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b) - order = ? - - - fsupf : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal ) → FChain A f mf ay x - fsupf f mf {y} ay x = TransFinite0 find x where - find : (x : Ordinal ) → (( z : Ordinal ) → z o< x → FChain A f mf ay z ) → FChain A f mf ay x - find x prev with trio< o∅ x - ... | tri< a ¬b ¬c = ? - ... | tri≈ ¬a b ¬c = ? - ... | tri> ¬a ¬b c = ? - ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → ((z : Ordinal) → z o< x → ZChain A f mf ay z) → ZChain A f mf ay x ind f mf {y} ay x prev with Oprev-p x @@ -811,7 +799,17 @@ order : {b sup1 z1 : Ordinal} → b o< x → psupf sup1 o< psupf b → FClosure A f (psupf sup1) z1 → (z1 ≡ psupf b) ∨ (z1 << psupf b) - order {b} {s} {z1} b<x ps<pb fc = ? + order {b} {s} {z1} b<x ps<pb fc = ? where + bzc = pzc (osuc b) (ob<x lim b<x) + Sb : SUP A ? + Sb = ZChain.sup bzc + sb = & (SUP.sup (ZChain.sup bzc)) + zc21 : ZChain.supf bzc (osuc b) ≡ sb + zc21 = ZChain.supf=sup bzc + zc22 : {z : HOD} → UnionCF A f mf ay (ZChain.supf bzc) (osuc b) ∋ z + → (z ≡ SUP.sup (ZChain.sup bzc)) ∨ (z < SUP.sup (ZChain.sup bzc)) + zc22 = SUP.x<sup (ZChain.sup bzc) + zc23 = SUP.min-sup (ZChain.sup bzc) csupf : (z : Ordinal) → odef (UnionCF A f mf ay psupf x) (psupf z) csupf z with trio< z x | inspect psupf z