Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 126:1114081eb51f
power set
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Jul 2019 01:27:25 +0900 |
parents | 20e59a28d263 |
children | 870fe02c7a07 |
files | HOD.agda |
diffstat | 1 files changed, 8 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Mon Jul 01 00:20:56 2019 +0900 +++ b/HOD.agda Mon Jul 01 01:27:25 2019 +0900 @@ -346,13 +346,13 @@ -- In case of later, ZFSubset A ∋ t and t ∋ x implies ZFSubset A ∋ x by transitivity -- power→ : (A t : HOD) → Power A ∋ t → {x : HOD} → t ∋ x → A ∋ x - power→ A t P∋t {x} t∋x = proj1 lemma-s where + power→ A t P∋t {x} t∋x with osuc-≡< (sup-lb P∋t) + ... | case1 eq = proj1 (def-subst t∋x (sym (subst₂ (λ j k → j ≡ k ) oiso oiso ( cong (λ k → ord→od k) (sym eq) ))) refl ) + ... | case2 lt = otrans A (proj1 (lemma lt )) (c<→o< {suc n} {x} {t} t∋x) where minsup : HOD - minsup = ZFSubset A ( Ord ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) - lemma-s : ZFSubset A ( Ord ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) ∋ x - lemma-s with osuc-≡< (sup-lb P∋t) - lemma-s | case1 eq = proj1 ( def-subst t∋x () ? ) - lemma-s | case2 lt = {!!} + minsup = ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) + lemma : od→ord t o< od→ord minsup → minsup ∋ t + lemma lt = {!!} -- -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t -- Power A is a sup of ZFSubset A t, so Power A ∋ t @@ -363,7 +363,8 @@ lemma-eq : ZFSubset A t == t eq→ lemma-eq {z} w = proj2 w eq← lemma-eq {z} w = record { proj2 = w ; - proj1 = def-subst {suc n} {_} {_} {A} {z} ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } + proj1 = def-subst {suc n} {_} {_} {A} {z} + ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } lemma1 : od→ord (ZFSubset A (ord→od (od→ord t))) ≡ od→ord t lemma1 = subst (λ k → od→ord (ZFSubset A k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (===-≡ lemma-eq )) lemma : od→ord (ZFSubset A (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset A (ord→od x)))