Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1455:11600d5caf37
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 07 Jul 2023 16:41:11 +0900 |
parents | 43f0c259e6c1 |
children | ecfc24f53df4 |
files | src/cardinal.agda |
diffstat | 1 files changed, 14 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Fri Jul 07 12:40:28 2023 +0900 +++ b/src/cardinal.agda Fri Jul 07 16:41:11 2023 +0900 @@ -325,13 +325,13 @@ ... | case1 a = true ... | case2 b = false -fun←eq : {S : HOD} (b : HODBijection (Power S) S ) {x y : Ordinal } → {ax : odef S x} {ax1 : odef S y} +fun←eq : {P S : HOD} (b : HODBijection P S ) {x y : Ordinal } → {ax : odef S x} {ax1 : odef S y} → x ≡ y → fun← b x ax ≡ fun← b y ax1 -fun←eq {S} b {x} {x} {ax} {ax1} refl = cong (λ k → fun← b x k) ( HE.≅-to-≡ ( ∋-irr {S} ax ax1 )) +fun←eq {P} {S} b {x} {x} {ax} {ax1} refl = cong (λ k → fun← b x k) ( HE.≅-to-≡ ( ∋-irr {S} ax ax1 )) -fun→eq : {S : HOD} (b : HODBijection (Power S) S ) {x y : Ordinal } → {ax : odef (Power S) x} {ax1 : odef (Power S) y} +fun→eq : {P S : HOD} (b : HODBijection P S ) {x y : Ordinal } → {ax : odef P x} {ax1 : odef P y} → x ≡ y → fun→ b x ax ≡ fun→ b y ax1 -fun→eq {S} b {x} {x} {ax} {ax1} refl = cong (λ k → fun→ b x k) ( HE.≅-to-≡ ( ∋-irr {Power S} ax ax1 )) +fun→eq {P} {S} b {x} {x} {ax} {ax1} refl = cong (λ k → fun→ b x k) ( HE.≅-to-≡ ( ∋-irr {P} ax ax1 )) -- S @@ -339,8 +339,8 @@ -- S s₀ s₁ ... sn -- t true false ... false --- -Cantor1 : { S : HOD } → S c< Power S -Cantor1 {S} f = diag4 where +Cantor1 : ( S : HOD ) → S c< Power S +Cantor1 S f = diag4 where f1 : Injection (& S) (& (Power S)) f1 = record { i→ = λ x sx → & (* x , * x) ; iB = c00 ; inject = c02 }where c02 : (x y : Ordinal) (ltx : odef (* (& S)) x) (lty : odef (* (& S)) y) → @@ -411,11 +411,11 @@ diag4 : ⊥ diag4 = diagn1 (fun→ b (& Diag) diag3) (funB b (& Diag) diag3) refl -Cantor2 : { u : HOD } → ¬ ( u =c= Power u ) -Cantor2 {u} ceq = Cantor1 {u} record { i→ = λ x lt → fun← ceq x (subst (λ k → odef k x) *iso lt) +c<¬= : { u s : HOD } → u c< s → ¬ ( u =c= s ) +c<¬= {u} {s} c<u ceq = c<u record { i→ = λ x lt → fun← ceq x (subst (λ k → odef k x) *iso lt) ; iB = λ x lt → subst₂ (λ j k → odef j k) (sym *iso) refl (funA ceq x (subst (λ k → odef k x) *iso lt)) ; inject = c04 } where - c04 : (x y : Ordinal) (ltx : odef (* (& (Power u))) x) (lty : odef (* (& (Power u))) y) + c04 : (x y : Ordinal) (ltx : odef (* (& (s))) x) (lty : odef (* (& (s))) y) → fun← ceq x (subst (λ k → odef k x) *iso ltx) ≡ fun← ceq y (subst (λ k → odef k y) *iso lty) → x ≡ y c04 x y ltx lty eq = begin x ≡⟨ sym ( fiso→ ceq x c05 ) ⟩ @@ -423,12 +423,14 @@ fun→ ceq ( fun← ceq y c06 ) (funA ceq y c06) ≡⟨ fiso→ ceq y c06 ⟩ y ∎ where open ≡-Reasoning - c05 : odef (Power u) x + c05 : odef (s) x c05 = subst (λ k → odef k x) *iso ltx - c06 : odef (Power u) y + c06 : odef (s) y c06 = subst (λ k → odef k y) *iso lty +Cantor2 : (u : HOD) → ¬ ( u =c= Power u ) +Cantor2 u = c<¬= (Cantor1 u ) + -