Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 331:12071f79f3cf
HOD done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jul 2020 16:56:21 +0900 |
parents | 0faa7120e4b5 |
children | fcc65e37e72b |
files | BAlgbra.agda LEMC.agda ODC.agda cardinal.agda filter.agda |
diffstat | 5 files changed, 102 insertions(+), 88 deletions(-) [+] |
line wrap: on
line diff
--- a/BAlgbra.agda Sun Jul 05 15:49:00 2020 +0900 +++ b/BAlgbra.agda Sun Jul 05 16:56:21 2020 +0900 @@ -19,60 +19,66 @@ open OD O open OD.OD open ODAxiom odAxiom +open HOD open _∧_ open _∨_ open Bool _∩_ : ( A B : HOD ) → HOD -A ∩ B = record { def = λ x → def A x ∧ def B x } +A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; + odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y)) } _∪_ : ( A B : HOD ) → HOD -A ∪ B = record { def = λ x → def A x ∨ def B x } +A ∪ B = record { od = record { def = λ x → odef A x ∨ odef B x } ; + odmax = omax (odmax A) (odmax B) ; <odmax = lemma } where + lemma : {y : Ordinal} → odef A y ∨ odef B y → y o< omax (odmax A) (odmax B) + lemma {y} (case1 a) = ordtrans (<odmax A a) (omax-x _ _) + lemma {y} (case2 b) = ordtrans (<odmax B b) (omax-y _ _) _\_ : ( A B : HOD ) → HOD -A \ B = record { def = λ x → def A x ∧ ( ¬ ( def B x ) ) } +A \ B = record { od = record { def = λ x → odef A x ∧ ( ¬ ( odef B x ) ) }; odmax = odmax A ; <odmax = λ y → <odmax A (proj1 y) } ∪-Union : { A B : HOD } → Union (A , B) ≡ ( A ∪ B ) ∪-Union {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where - lemma1 : {x : Ordinal} → def (Union (A , B)) x → def (A ∪ B) x + lemma1 : {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x lemma1 {x} lt = lemma3 lt where - lemma4 : {y : Ordinal} → def (A , B) y ∧ def (ord→od y) x → ¬ (¬ ( def A x ∨ def B x) ) + lemma4 : {y : Ordinal} → odef (A , B) y ∧ odef (ord→od y) x → ¬ (¬ ( odef A x ∨ odef B x) ) lemma4 {y} z with proj1 z - lemma4 {y} z | case1 refl = double-neg (case1 ( subst (λ k → def k x ) oiso (proj2 z)) ) - lemma4 {y} z | case2 refl = double-neg (case2 ( subst (λ k → def k x ) oiso (proj2 z)) ) - lemma3 : (((u : Ordinals.ord O) → ¬ def (A , B) u ∧ def (ord→od u) x) → ⊥) → def (A ∪ B) x + lemma4 {y} z | case1 refl = double-neg (case1 ( subst (λ k → odef k x ) oiso (proj2 z)) ) + lemma4 {y} z | case2 refl = double-neg (case2 ( subst (λ k → odef k x ) oiso (proj2 z)) ) + lemma3 : (((u : Ordinals.ord O) → ¬ odef (A , B) u ∧ odef (ord→od u) x) → ⊥) → odef (A ∪ B) x lemma3 not = ODC.double-neg-eilm O (FExists _ lemma4 not) -- choice - lemma2 : {x : Ordinal} → def (A ∪ B) x → def (Union (A , B)) x - lemma2 {x} (case1 A∋x) = subst (λ k → def (Union (A , B)) k) diso ( IsZF.union→ isZF (A , B) (ord→od x) A - (record { proj1 = case1 refl ; proj2 = subst (λ k → def A k) (sym diso) A∋x})) - lemma2 {x} (case2 B∋x) = subst (λ k → def (Union (A , B)) k) diso ( IsZF.union→ isZF (A , B) (ord→od x) B - (record { proj1 = case2 refl ; proj2 = subst (λ k → def B k) (sym diso) B∋x})) + lemma2 : {x : Ordinal} → odef (A ∪ B) x → odef (Union (A , B)) x + lemma2 {x} (case1 A∋x) = subst (λ k → odef (Union (A , B)) k) diso ( IsZF.union→ isZF (A , B) (ord→od x) A + (record { proj1 = case1 refl ; proj2 = subst (λ k → odef A k) (sym diso) A∋x})) + lemma2 {x} (case2 B∋x) = subst (λ k → odef (Union (A , B)) k) diso ( IsZF.union→ isZF (A , B) (ord→od x) B + (record { proj1 = case2 refl ; proj2 = subst (λ k → odef B k) (sym diso) B∋x})) ∩-Select : { A B : HOD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) ≡ ( A ∩ B ) ∩-Select {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where - lemma1 : {x : Ordinal} → def (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x → def (A ∩ B) x - lemma1 {x} lt = record { proj1 = proj1 lt ; proj2 = subst (λ k → def B k ) diso (proj2 (proj2 lt)) } - lemma2 : {x : Ordinal} → def (A ∩ B) x → def (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x + lemma1 : {x : Ordinal} → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x → odef (A ∩ B) x + lemma1 {x} lt = record { proj1 = proj1 lt ; proj2 = subst (λ k → odef B k ) diso (proj2 (proj2 lt)) } + lemma2 : {x : Ordinal} → odef (A ∩ B) x → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x lemma2 {x} lt = record { proj1 = proj1 lt ; proj2 = - record { proj1 = subst (λ k → def A k) (sym diso) (proj1 lt) ; proj2 = subst (λ k → def B k ) (sym diso) (proj2 lt) } } + record { proj1 = subst (λ k → odef A k) (sym diso) (proj1 lt) ; proj2 = subst (λ k → odef B k ) (sym diso) (proj2 lt) } } dist-ord : {p q r : HOD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r ) dist-ord {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where - lemma1 : {x : Ordinal} → def (p ∩ (q ∪ r)) x → def ((p ∩ q) ∪ (p ∩ r)) x + lemma1 : {x : Ordinal} → odef (p ∩ (q ∪ r)) x → odef ((p ∩ q) ∪ (p ∩ r)) x lemma1 {x} lt with proj2 lt lemma1 {x} lt | case1 q∋x = case1 ( record { proj1 = proj1 lt ; proj2 = q∋x } ) lemma1 {x} lt | case2 r∋x = case2 ( record { proj1 = proj1 lt ; proj2 = r∋x } ) - lemma2 : {x : Ordinal} → def ((p ∩ q) ∪ (p ∩ r)) x → def (p ∩ (q ∪ r)) x + lemma2 : {x : Ordinal} → odef ((p ∩ q) ∪ (p ∩ r)) x → odef (p ∩ (q ∪ r)) x lemma2 {x} (case1 p∩q) = record { proj1 = proj1 p∩q ; proj2 = case1 (proj2 p∩q ) } lemma2 {x} (case2 p∩r) = record { proj1 = proj1 p∩r ; proj2 = case2 (proj2 p∩r ) } dist-ord2 : {p q r : HOD } → p ∪ ( q ∩ r ) ≡ ( p ∪ q ) ∩ ( p ∪ r ) dist-ord2 {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where - lemma1 : {x : Ordinal} → def (p ∪ (q ∩ r)) x → def ((p ∪ q) ∩ (p ∪ r)) x + lemma1 : {x : Ordinal} → odef (p ∪ (q ∩ r)) x → odef ((p ∪ q) ∩ (p ∪ r)) x lemma1 {x} (case1 cp) = record { proj1 = case1 cp ; proj2 = case1 cp } lemma1 {x} (case2 cqr) = record { proj1 = case2 (proj1 cqr) ; proj2 = case2 (proj2 cqr) } - lemma2 : {x : Ordinal} → def ((p ∪ q) ∩ (p ∪ r)) x → def (p ∪ (q ∩ r)) x + lemma2 : {x : Ordinal} → odef ((p ∪ q) ∩ (p ∪ r)) x → odef (p ∪ (q ∩ r)) x lemma2 {x} lt with proj1 lt | proj2 lt lemma2 {x} lt | case1 cp | _ = case1 cp lemma2 {x} lt | _ | case1 cp = case1 cp
--- a/LEMC.agda Sun Jul 05 15:49:00 2020 +0900 +++ b/LEMC.agda Sun Jul 05 16:56:21 2020 +0900 @@ -112,7 +112,7 @@ lemma : {y : Ordinal} → OD.def (od x) y ∧ OD.def (od u) y → y o< omin (odmax x) (odmax u) lemma {y} lt = min1 (<odmax x (proj1 lt)) (<odmax u (proj2 lt)) np : ¬ (p =h= od∅) - np p∅ = NP (λ y p∋y → ∅< p∋y p∅ ) + np p∅ = NP (λ y p∋y → ∅< {p} {_} p∋y p∅ ) y1choice : choiced p y1choice = choice-func p np y1 : HOD @@ -126,9 +126,9 @@ cx : {x : HOD} → ¬ (x =h= od∅ ) → choiced x cx {x} nx = choice-func x nx minimal : (x : HOD ) → ¬ (x =h= od∅ ) → HOD - minimal x not = min (Min2 (a-choice (cx not) ) x (is-in (cx not))) + minimal x ne = min (Min2 (a-choice (cx {x} ne) ) x (is-in (cx ne))) x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( od→ord ( minimal x ne ) ) - x∋minimal x ne = x∋min (Min2 (a-choice (cx ne) ) x (is-in (cx ne))) + x∋minimal x ne = x∋min (Min2 (a-choice (cx {x} ne) ) x (is-in (cx ne))) minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (od→ord y)) ∧ (odef x (od→ord y) ) minimal-1 x ne y = min-empty (Min2 (a-choice (cx ne) ) x (is-in (cx ne))) y
--- a/ODC.agda Sun Jul 05 15:49:00 2020 +0900 +++ b/ODC.agda Sun Jul 05 16:56:21 2020 +0900 @@ -23,6 +23,8 @@ open HOD +open _∧_ + _=h=_ : (x y : HOD) → Set n x =h= y = od x == od y @@ -40,26 +42,29 @@ -- https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog -- -ppp : { p : Set n } { a : HOD } → record { od = record { def = λ x → p } ; odmax = {!!} ; <odmax = {!!} } ∋ a → p -ppp {p} {a} d = d +pred-od : ( p : Set n ) → HOD +pred-od p = record { od = record { def = λ x → (x ≡ o∅) ∧ p } ; + odmax = osuc o∅; <odmax = λ x → subst (λ k → k o< osuc o∅) (sym (proj1 x)) <-osuc } + +ppp : { p : Set n } { a : HOD } → pred-od p ∋ a → p +ppp {p} {a} d = proj2 d --- p∨¬p : ( p : Set n ) → p ∨ ( ¬ p ) -- assuming axiom of choice --- p∨¬p p with is-o∅ ( od→ord ( record { odef = λ x → p } )) --- p∨¬p p | yes eq = case2 (¬p eq) where --- ps = record { odef = λ x → p } --- lemma : ps =h= od∅ → p → ⊥ --- lemma eq p0 = ¬x<0 {od→ord ps} (eq→ eq p0 ) --- ¬p : (od→ord ps ≡ o∅) → p → ⊥ --- ¬p eq = lemma ( subst₂ (λ j k → j =h= k ) oiso o∅≡od∅ ( o≡→== eq )) --- p∨¬p p | no ¬p = case1 (ppp {p} {minimal ps (λ eq → ¬p (eqo∅ eq))} lemma) where --- ps = record { odef = λ x → p } --- eqo∅ : ps =h= od∅ → od→ord ps ≡ o∅ --- eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq)) --- lemma : ps ∋ minimal ps (λ eq → ¬p (eqo∅ eq)) --- lemma = x∋minimal ps (λ eq → ¬p (eqo∅ eq)) - -postulate - p∨¬p : ( p : Set n ) → p ∨ ( ¬ p ) -- assuming axiom of choice +p∨¬p : ( p : Set n ) → p ∨ ( ¬ p ) -- assuming axiom of choice +p∨¬p p with is-o∅ ( od→ord (pred-od p )) +p∨¬p p | yes eq = case2 (¬p eq) where + ps = pred-od p + eqo∅ : ps =h= od∅ → od→ord ps ≡ o∅ + eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq)) + lemma : ps =h= od∅ → p → ⊥ + lemma eq p0 = ¬x<0 {od→ord ps} (eq→ eq record { proj1 = eqo∅ eq ; proj2 = p0 } ) + ¬p : (od→ord ps ≡ o∅) → p → ⊥ + ¬p eq = lemma ( subst₂ (λ j k → j =h= k ) oiso o∅≡od∅ ( o≡→== eq )) +p∨¬p p | no ¬p = case1 (ppp {p} {minimal ps (λ eq → ¬p (eqo∅ eq))} lemma) where + ps = pred-od p + eqo∅ : ps =h= od∅ → od→ord ps ≡ o∅ + eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq)) + lemma : ps ∋ minimal ps (λ eq → ¬p (eqo∅ eq)) + lemma = x∋minimal ps (λ eq → ¬p (eqo∅ eq)) decp : ( p : Set n ) → Dec p -- assuming axiom of choice decp p with p∨¬p p
--- a/cardinal.agda Sun Jul 05 15:49:00 2020 +0900 +++ b/cardinal.agda Sun Jul 05 16:56:21 2020 +0900 @@ -29,49 +29,48 @@ -- we have to work on Ordinal to keep OD Level n -- since we use p∨¬p which works only on Level n - -∋-p : (A x : OD ) → Dec ( A ∋ x ) +∋-p : (A x : HOD ) → Dec ( A ∋ x ) ∋-p A x with ODC.p∨¬p O ( A ∋ x ) ∋-p A x | case1 t = yes t ∋-p A x | case2 t = no t -_⊗_ : (A B : OD) → OD -A ⊗ B = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkAB p ) } where +_⊗_ : (A B : HOD) → HOD +A ⊗ B = record { od = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkAB p ) } } where checkAB : { p : Ordinal } → def ZFProduct p → Set n - checkAB (pair x y) = def A x ∧ def B y + checkAB (pair x y) = odef A x ∧ odef B y -func→od0 : (f : Ordinal → Ordinal ) → OD -func→od0 f = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkfunc p ) } where +func→od0 : (f : Ordinal → Ordinal ) → HOD +func→od0 f = record { od = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkfunc p ) }} where checkfunc : { p : Ordinal } → def ZFProduct p → Set n checkfunc (pair x y) = f x ≡ y -- Power (Power ( A ∪ B )) ∋ ( A ⊗ B ) -Func : ( A B : OD ) → OD -Func A B = record { def = λ x → def (Power (A ⊗ B)) x } +Func : ( A B : HOD ) → HOD +Func A B = record { od = record { def = λ x → odef (Power (A ⊗ B)) x } } -- power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x) -func→od : (f : Ordinal → Ordinal ) → ( dom : OD ) → OD +func→od : (f : Ordinal → Ordinal ) → ( dom : HOD ) → HOD func→od f dom = Replace dom ( λ x → < x , ord→od (f (od→ord x)) > ) -record Func←cd { dom cod : OD } {f : Ordinal } : Set n where +record Func←cd { dom cod : HOD } {f : Ordinal } : Set n where field func-1 : Ordinal → Ordinal func→od∈Func-1 : Func dom cod ∋ func→od func-1 dom -od→func : { dom cod : OD } → {f : Ordinal } → def (Func dom cod ) f → Func←cd {dom} {cod} {f} -od→func {dom} {cod} {f} lt = record { func-1 = λ x → sup-o ( λ y → lemma x {!!} ) ; func→od∈Func-1 = record { proj1 = {!!} ; proj2 = {!!} } } where +od→func : { dom cod : HOD } → {f : Ordinal } → odef (Func dom cod ) f → Func←cd {dom} {cod} {f} +od→func {dom} {cod} {f} lt = record { func-1 = λ x → sup-o {!!} ( λ y lt → lemma x {!!} ) ; func→od∈Func-1 = record { proj1 = {!!} ; proj2 = {!!} } } where lemma : Ordinal → Ordinal → Ordinal - lemma x y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → def (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y) + lemma x y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → odef (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y) lemma x y | p | no n = o∅ lemma x y | p | yes f∋y = lemma2 (proj1 (ODC.double-neg-eilm O ( p {ord→od y} f∋y ))) where -- p : {y : OD} → f ∋ y → ¬ ¬ (dom ⊗ cod ∋ y) lemma2 : {p : Ordinal} → ord-pair p → Ordinal lemma2 (pair x1 y1) with ODC.decp O ( x1 ≡ x) lemma2 (pair x1 y1) | yes p = y1 lemma2 (pair x1 y1) | no ¬p = o∅ - fod : OD - fod = Replace dom ( λ x → < x , ord→od (sup-o ( λ y → lemma (od→ord x) {!!} )) > ) + fod : HOD + fod = Replace dom ( λ x → < x , ord→od (sup-o {!!} ( λ y lt → lemma (od→ord x) {!!} )) > ) open Func←cd @@ -91,18 +90,18 @@ -- X ---------------------------> Y -- ymap <- def Y y -- -record Onto (X Y : OD ) : Set n where +record Onto (X Y : HOD ) : Set n where field xmap : Ordinal ymap : Ordinal - xfunc : def (Func X Y) xmap - yfunc : def (Func Y X) ymap - onto-iso : {y : Ordinal } → (lty : def Y y ) → + xfunc : odef (Func X Y) xmap + yfunc : odef (Func Y X) ymap + onto-iso : {y : Ordinal } → (lty : odef Y y ) → func-1 ( od→func {X} {Y} {xmap} xfunc ) ( func-1 (od→func yfunc) y ) ≡ y open Onto -onto-restrict : {X Y Z : OD} → Onto X Y → Z ⊆ Y → Onto X Z +onto-restrict : {X Y Z : HOD} → Onto X Y → Z ⊆ Y → Onto X Z onto-restrict {X} {Y} {Z} onto Z⊆Y = record { xmap = xmap1 ; ymap = zmap @@ -114,23 +113,23 @@ xmap1 = od→ord (Select (ord→od (xmap onto)) {!!} ) zmap : Ordinal zmap = {!!} - xfunc1 : def (Func X Z) xmap1 + xfunc1 : odef (Func X Z) xmap1 xfunc1 = {!!} - zfunc : def (Func Z X) zmap + zfunc : odef (Func Z X) zmap zfunc = {!!} - onto-iso1 : {z : Ordinal } → (ltz : def Z z ) → func-1 (od→func xfunc1 ) (func-1 (od→func zfunc ) z ) ≡ z + onto-iso1 : {z : Ordinal } → (ltz : odef Z z ) → func-1 (od→func xfunc1 ) (func-1 (od→func zfunc ) z ) ≡ z onto-iso1 = {!!} -record Cardinal (X : OD ) : Set n where +record Cardinal (X : HOD ) : Set n where field cardinal : Ordinal conto : Onto X (Ord cardinal) cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto X (Ord y) -cardinal : (X : OD ) → Cardinal X +cardinal : (X : HOD ) → Cardinal X cardinal X = record { - cardinal = sup-o ( λ x → proj1 ( cardinal-p {!!}) ) + cardinal = sup-o {!!} ( λ x lt → proj1 ( cardinal-p {!!}) ) ; conto = onto ; cmax = cmax } where @@ -138,24 +137,24 @@ cardinal-p x with ODC.p∨¬p O ( Onto X (Ord x) ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } - S = sup-o (λ x → proj1 (cardinal-p {!!})) - lemma1 : (x : Ordinal) → ((y : Ordinal) → y o< x → Lift (suc n) (y o< (osuc S) → Onto X (Ord y))) → - Lift (suc n) (x o< (osuc S) → Onto X (Ord x) ) + S = sup-o {!!} (λ x lt → proj1 (cardinal-p {!!})) + lemma1 : (x : Ordinal) → ((y : Ordinal) → y o< x → (y o< (osuc S) → Onto X (Ord y))) → + (x o< (osuc S) → Onto X (Ord x) ) lemma1 x prev with trio< x (osuc S) lemma1 x prev | tri< a ¬b ¬c with osuc-≡< a - lemma1 x prev | tri< a ¬b ¬c | case1 x=S = lift ( λ lt → {!!} ) - lemma1 x prev | tri< a ¬b ¬c | case2 x<S = lift ( λ lt → lemma2 ) where + lemma1 x prev | tri< a ¬b ¬c | case1 x=S = ( λ lt → {!!} ) + lemma1 x prev | tri< a ¬b ¬c | case2 x<S = ( λ lt → lemma2 ) where lemma2 : Onto X (Ord x) lemma2 with prev {!!} {!!} - ... | lift t = t {!!} - lemma1 x prev | tri≈ ¬a b ¬c = lift ( λ lt → ⊥-elim ( o<¬≡ b lt )) - lemma1 x prev | tri> ¬a ¬b c = lift ( λ lt → ⊥-elim ( o<> c lt )) + ... | t = {!!} + lemma1 x prev | tri≈ ¬a b ¬c = ( λ lt → ⊥-elim ( o<¬≡ b lt )) + lemma1 x prev | tri> ¬a ¬b c = ( λ lt → ⊥-elim ( o<> c lt )) onto : Onto X (Ord S) - onto with TransFinite {λ x → Lift (suc n) ( x o< osuc S → Onto X (Ord x) ) } lemma1 S - ... | lift t = t <-osuc + onto with TransFinite {λ x → ( x o< osuc S → Onto X (Ord x) ) } lemma1 S + ... | t = t <-osuc cmax : (y : Ordinal) → S o< y → ¬ Onto X (Ord y) - cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {S} - (sup-o< {λ x → proj1 ( cardinal-p {!!})}{{!!}} ) lemma refl ) where + cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {S} {!!} lemma refl ) where + -- (sup-o< ? {λ x lt → proj1 ( cardinal-p {!!})}{{!!}} ) lemma refl ) where lemma : proj1 (cardinal-p y) ≡ y lemma with ODC.p∨¬p O ( Onto X (Ord y) ) lemma | case1 x = refl
--- a/filter.agda Sun Jul 05 15:49:00 2020 +0900 +++ b/filter.agda Sun Jul 05 16:56:21 2020 +0900 @@ -54,7 +54,7 @@ trans-⊆ A⊆B B⊆C = record { incl = λ x → incl B⊆C (incl A⊆B x) } power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A -power→⊆ A t PA∋t = record { incl = λ {x} t∋x → HODC.double-neg-eilm O (t1 t∋x) } where +power→⊆ A t PA∋t = record { incl = λ {x} t∋x → ODC.double-neg-eilm O (t1 t∋x) } where t1 : {x : HOD } → t ∋ x → ¬ ¬ (A ∋ x) t1 = zf.IsZF.power→ isZF A t PA∋t @@ -70,6 +70,10 @@ q∩q⊆q : {p q : HOD } → (q ∩ p) ⊆ q q∩q⊆q = record { incl = λ lt → proj1 lt } +open HOD +_=h=_ : (x y : HOD) → Set n +x =h= y = od x == od y + ----- -- -- ultra filter is prime @@ -84,11 +88,11 @@ lemma3 {p} {q} lt with ultra-filter.ultra u (∪-lemma1 (∈-filter P lt) ) ... | case1 p∈P = case1 p∈P ... | case2 ¬p∈P = case2 (filter1 P {q ∩ (L \ p)} (∪-lemma2 (∈-filter P lt)) lemma7 lemma8) where - lemma5 : ((p ∪ q ) ∩ (L \ p)) == (q ∩ (L \ p)) + lemma5 : ((p ∪ q ) ∩ (L \ p)) =h= (q ∩ (L \ p)) lemma5 = record { eq→ = λ {x} lt → record { proj1 = lemma4 x lt ; proj2 = proj2 lt } ; eq← = λ {x} lt → record { proj1 = case2 (proj1 lt) ; proj2 = proj2 lt } } where - lemma4 : (x : Ordinal ) → def ((p ∪ q) ∩ (L \ p)) x → def q x + lemma4 : (x : Ordinal ) → odef ((p ∪ q) ∩ (L \ p)) x → odef q x lemma4 x lt with proj1 lt lemma4 x lt | case1 px = ⊥-elim ( proj2 (proj2 lt) px ) lemma4 x lt | case2 qx = qx @@ -110,11 +114,11 @@ ; ultra = λ {p} p⊆L → prime-filter.prime prime (lemma p p⊆L) } where open _==_ - p+1-p=1 : {p : HOD} → p ⊆ L → L == (p ∪ (L \ p)) - eq→ (p+1-p=1 {p} p⊆L) {x} lt with HODC.decp O (def p x) + p+1-p=1 : {p : HOD} → p ⊆ L → L =h= (p ∪ (L \ p)) + eq→ (p+1-p=1 {p} p⊆L) {x} lt with ODC.decp O (odef p x) eq→ (p+1-p=1 {p} p⊆L) {x} lt | yes p∋x = case1 p∋x eq→ (p+1-p=1 {p} p⊆L) {x} lt | no ¬p = case2 (record { proj1 = lt ; proj2 = ¬p }) - eq← (p+1-p=1 {p} p⊆L) {x} ( case1 p∋x ) = subst (λ k → def L k ) diso (incl p⊆L ( subst (λ k → def p k) (sym diso) p∋x )) + eq← (p+1-p=1 {p} p⊆L) {x} ( case1 p∋x ) = subst (λ k → odef L k ) diso (incl p⊆L ( subst (λ k → odef p k) (sym diso) p∋x )) eq← (p+1-p=1 {p} p⊆L) {x} ( case2 ¬p ) = proj1 ¬p lemma : (p : HOD) → p ⊆ L → filter P ∋ (p ∪ (L \ p)) lemma p p⊆L = subst (λ k → filter P ∋ k ) (==→o≡ (p+1-p=1 p⊆L)) f∋L