Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 776:13d50db96684
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 26 Jul 2022 20:09:43 +0900 |
parents | 4d9f7d8beedf |
children | fa765e37d7f9 |
files | src/zorn.agda |
diffstat | 1 files changed, 13 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jul 26 18:24:04 2022 +0900 +++ b/src/zorn.agda Tue Jul 26 20:09:43 2022 +0900 @@ -714,7 +714,7 @@ -- no-extension : ZChain A f mf ay x no-extension = record { supf = supf0 - ; initial = pinit ; chain∋init = pcy ; csupf = csupf ; sup=u = ? ; order = ? ; fcy<sup = ? ; supf-mono = ZChain.supf-mono zc + ; initial = pinit ; chain∋init = pcy ; csupf = csupf ; sup=u = {!!} ; order = {!!} ; fcy<sup = {!!} ; supf-mono = ZChain.supf-mono zc ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } zc4 : ZChain A f mf ay x @@ -725,8 +725,8 @@ ... | case1 pr = no-extension -- we have previous A ∋ z < x , f z ≡ x, so chain ∋ f z ≡ x because of f-next ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) apx ) ... | case1 is-sup = -- x is a sup of zc - record { supf = psupf1 ; chain⊆A = ? ; f-next = ? ; f-total = ? ; csupf = ? ; sup=u = ? ; order = ? ; fcy<sup = ? - ; supf-mono = ? ; initial = ? ; chain∋init = ? } where + record { supf = psupf1 ; chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} ; csupf = {!!} ; sup=u = {!!} ; order = {!!} ; fcy<sup = {!!} + ; supf-mono = {!!} ; initial = {!!} ; chain∋init = {!!} } where psupf1 : Ordinal → Ordinal psupf1 z with trio< z x ... | tri< a ¬b ¬c = ZChain.supf zc z @@ -761,7 +761,7 @@ psupf : Ordinal → Ordinal psupf z with trio< z x ... | tri< a ¬b ¬c = ZChain.supf (pzc (osuc z) (ob<x lim a)) z - ... | tri≈ ¬a b ¬c = spu -- ^^ this z dependcy have to removed + ... | tri≈ ¬a b ¬c = spu -- ^^ this z dependcy have to be removed ... | tri> ¬a ¬b c = spu ---- ∀ z o< x , max (supf (pzc (osuc z) (ob<x lim a))) psupf<z : {z : Ordinal } → ( a : z o< x ) → psupf z ≡ ZChain.supf (pzc (osuc z) (ob<x lim a)) z @@ -797,14 +797,14 @@ zc25 : psupf z ≡ ZChain.supf ozc z zc25 = psupf<z z<x s<x : s o< x - s<x = ? + s<x = {!!} zc26 : psupf s ≡ ZChain.supf (pzc (osuc s) (ob<x lim s<x)) s zc26 = psupf<z s<x zc23 : ZChain.supf ozc s o< ZChain.supf ozc z - zc23 = ? + zc23 = {!!} zc24 : FClosure A f (ZChain.supf ozc s) z1 zc24 with trio< s x - ... | t = ? + ... | t = {!!} zc22 : (z1 ≡ psupf z) ∨ (z1 << psupf z) zc22 with ZChain.order ozc <-osuc zc23 zc24 ... | case1 eq = case1 (trans eq (sym eq1) ) @@ -813,9 +813,9 @@ cp1 = record { fcy<sup = zc20 ; order = zc21 } --- u = supf u = supf z - ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ sa , ch-is-sup ? ? ? ⟫ where + ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ sa , ch-is-sup {!!} {!!} {!!} ⟫ where sa = SUP.A∋maximal usup - ... | tri> ¬a ¬b c | record { eq = eq1 } = ? + ... | tri> ¬a ¬b c | record { eq = eq1 } = {!!} pchain : HOD pchain = UnionCF A f mf ay psupf x @@ -849,8 +849,8 @@ (sym (HasPrev.x=fy has-prev)) ( ch-is-sup u (ChainP-next A f mf ay _ is-sup) (fsuc _ fc)) ⟫ no-extension : ZChain A f mf ay x - no-extension = record { initial = pinit ; chain∋init = pcy ; supf = psupf ; csupf = csupf ; sup=u = ? ; order = ? ; fcy<sup = ? - ; supf-mono = ? ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } + no-extension = record { initial = pinit ; chain∋init = pcy ; supf = psupf ; csupf = csupf ; sup=u = {!!} ; order = {!!} ; fcy<sup = {!!} + ; supf-mono = {!!} ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } zc5 : ZChain A f mf ay x zc5 with ODC.∋-p O A (* x) ... | no noax = no-extension -- ¬ A ∋ p, just skip @@ -858,8 +858,8 @@ -- we have to check adding x preserve is-max ZChain A y f mf x ... | case1 pr = no-extension ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A pchain ax ) - ... | case1 is-sup = record { initial = {!!} ; chain∋init = {!!} ; supf = psupf1 ; csupf = ? ; sup=u = ? ; order = ? ; fcy<sup = ? - ; supf-mono = ? ; chain⊆A = {!!} ; f-next = {!!} ; f-total = ? } where -- x is a sup of (zc ?) + ... | case1 is-sup = record { initial = {!!} ; chain∋init = {!!} ; supf = psupf1 ; csupf = {!!} ; sup=u = {!!} ; order = {!!} ; fcy<sup = {!!} + ; supf-mono = {!!} ; chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} } where -- x is a sup of (zc ?) psupf1 : Ordinal → Ordinal psupf1 z with trio< z x ... | tri< a ¬b ¬c = ZChain.supf (pzc z a) z