Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1021:1407fed90475
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 25 Nov 2022 10:45:05 +0900 |
parents | eee019e64bea |
children | 1b87669d9b11 |
files | src/zorn.agda |
diffstat | 1 files changed, 24 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Nov 25 08:57:28 2022 +0900 +++ b/src/zorn.agda Fri Nov 25 10:45:05 2022 +0900 @@ -1480,7 +1480,7 @@ zc40 : odef (UnionCF A f mf ay supf1 b) w zc40 with ZChain.cfcs (pzc (ob<x lim m<x)) mf< (o<→≤ (omax-x _ _)) o≤-refl (o<→≤ sam<m) fcm ... | ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ - ... | ⟪ az , ch-is-sup u u<x is-sup fc1 ⟫ = ⟪ az , ch-is-sup u u<b ? fc2 ⟫ where -- u o< px → u o< b ? + ... | ⟪ az , ch-is-sup u u<x is-sup fc1 ⟫ = ⟪ az , ch-is-sup u u<b cp fc2 ⟫ where zc55 : u o< osuc m zc55 = u<x u<b : u o< b @@ -1493,6 +1493,19 @@ fc2 = subst (λ k → FClosure A f k w) (trans (sym (zeq _ _ zc57 (o<→≤ <-osuc))) (sym (sf1=sf (ordtrans≤-< u<x m<x))) ) fc1 where zc57 : osuc u o≤ osuc m zc57 = osucc u<x + sb=sa : {a : Ordinal } → a o≤ m → supf1 a ≡ ZChain.supf (pzc (ob<x lim m<x)) a + sb=sa {a} a≤m = trans (sf1=sf (ordtrans≤-< a≤m m<x)) (zeq _ _ (osucc a≤m) (o<→≤ <-osuc)) + cp : ChainP A f mf ay supf1 u + cp = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (sym (sb=sa u<x)) (ChainP.fcy<sup is-sup fc ) + ; order = order + ; supu=u = trans (sb=sa u<x ) (ChainP.supu=u is-sup) } where + order : {s : Ordinal} {z1 : Ordinal} → supf1 s o< supf1 u → + FClosure A f (supf1 s) z1 → (z1 ≡ supf1 u) ∨ (z1 << supf1 u) + order {s} {z} s<u fc = subst (λ k → (z ≡ k) ∨ ( z << k ) ) (sym (sb=sa u<x)) + (ChainP.order is-sup (subst₂ (λ j k → j o< k ) (sb=sa s≤m) (sb=sa u<x) s<u) + (subst (λ k → FClosure A f k z) (sb=sa s≤m ) fc )) where + s≤m : s o≤ m + s≤m = ordtrans (supf-inject0 supf-mono s<u ) u<x ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬a (ordtrans<-≤ a<b b≤x)) ... | tri> ¬a ¬b c = ⊥-elim ( ¬a (ordtrans<-≤ a<b b≤x)) cfcs mf< {a} {b} {w} a<b b≤x sa<b fc | case2 b<x = zc40 where @@ -1509,8 +1522,16 @@ ... | ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ ... | ⟪ az , ch-is-sup u u<x is-sup fc1 ⟫ = ⟪ az , ch-is-sup u u<x cp (subst (λ k → FClosure A f k w) (sym (sb=sa u<x)) fc1 ) ⟫ where cp : ChainP A f mf ay supf1 u - cp = ? - + cp = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (sym (sb=sa u<x)) (ChainP.fcy<sup is-sup fc ) + ; order = order + ; supu=u = trans (sb=sa u<x) (ChainP.supu=u is-sup) } where + order : {s : Ordinal} {z1 : Ordinal} → supf1 s o< supf1 u → + FClosure A f (supf1 s) z1 → (z1 ≡ supf1 u) ∨ (z1 << supf1 u) + order {s} {z} s<u fc = subst (λ k → (z ≡ k) ∨ ( z << k ) ) (sym (sb=sa u<x)) + (ChainP.order is-sup (subst₂ (λ j k → j o< k ) (sb=sa s<b) (sb=sa u<x) s<u) + (subst (λ k → FClosure A f k z) (sb=sa s<b ) fc )) where + s<b : s o< b + s<b = ordtrans (supf-inject0 supf-mono s<u ) u<x --- --- the maximum chain has fix point of any ≤-monotonic function ---