Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 466:14b0e0aa6487
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 22 Mar 2022 15:40:57 +0900 |
parents | aba3d15ad45c |
children | c65cb6c07a38 |
files | src/ODC.agda |
diffstat | 1 files changed, 18 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ODC.agda Tue Mar 22 12:10:15 2022 +0900 +++ b/src/ODC.agda Tue Mar 22 15:40:57 2022 +0900 @@ -121,28 +121,33 @@ record ZChain ( A : HOD ) (x : Ordinal) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field - NOMAX : OD - Chain : OD - nomax : (y m : Ordinal) → def NOMAX y → y o< x → ¬ ( * y < * m ) - chain : (y : Ordinal) → def Chain y → NOMAX == od od∅ → SUP A (* y) _<_ + NOMAX : HOD + Chain : HOD + nomax : (y m : Ordinal) → odef NOMAX y → y o< x → ¬ ( * y < * m ) + chain : (y : Ordinal) → odef Chain y → & NOMAX ≡ o∅ → SUP A (* y) _<_ Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n } → o∅ o< & A - → ( (x y z : HOD) → x < y → y < z → x < z ) → ( ( B : HOD) → (B⊆A : B ⊆ A) → SUP A B _<_ ) → Maximal A _<_ -Zorn-lemma {A} {_<_} 0<A ztrans SUP = {!!} where +Zorn-lemma {A} {_<_} 0<A SUP = zorn01 (TransFinite ind (& A)) where HasGreater : Ordinal → HOD HasGreater m = record { od = record { def = λ x → odef A x ∧ (* m < * x) } ; odmax = & A ; <odmax = {!!} } + zorn01 : ZChain A (& A) _<_ → Maximal A _<_ + zorn01 zc with is-o∅ ( & (ZChain.NOMAX zc) ) + ... | yes _ = {!!} + ... | no not = record { maximal = minimal (ZChain.NOMAX zc) (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = {!!} + ; ¬maximal<x = λ x lt m<x → ZChain.nomax zc {!!} {!!} (x∋minimal (ZChain.NOMAX zc) (λ eq → not (=od∅→≡o∅ eq)) ) {!!} {!!} } ind : (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A y _<_ ) → ZChain A x _<_ - ind x prev = {!!} where - zlemma01 : {!!} - zlemma01 with is-o∅ (& (HasGreater x)) - ... | no _ = {!!} - ... | yes _ = {!!} - zchain : (x : Ordinal) → ZChain A x _<_ - zchain x = TransFinite ind x + ind x prev with Oprev-p x + ... | yes ox with is-o∅ (& (HasGreater x)) + ... | yes _ = record { NOMAX = {!!} ; nomax = {!!} ; Chain = {!!} ; chain = {!!} } where + ... | no _ = record { NOMAX = {!!} ; nomax = {!!} ; Chain = {!!} ; chain = {!!} } where + ind x prev | no ¬ox with trio< (& A) x + ... | tri< a ¬b ¬c = {!!} + ... | tri≈ ¬a b ¬c = {!!} + ... | tri> ¬a ¬b c = {!!} open import zfc