Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 792:150e1c7097ce
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 04 Aug 2022 06:59:40 +0900 |
parents | f4450bc95699 |
children | bcc241fbb390 |
files | src/zorn.agda |
diffstat | 1 files changed, 15 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Aug 03 16:04:51 2022 +0900 +++ b/src/zorn.agda Thu Aug 04 06:59:40 2022 +0900 @@ -744,16 +744,23 @@ UnionCF⊆ ⟪ as , ch-init fc ⟫ = UnionCF⊆ ⟪ as , ch-init fc ⟫ UnionCF⊆ ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = f1 ; order = o1 } fc ⟫ with trio< u px ... | tri< a ¬b ¬c = ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = f1 ; order = order0 } fc ⟫ where - order1 : {s z1 : Ordinal} → supf1 s o< supf0 u → FClosure A f (supf1 s) z1 - → (z1 ≡ supf0 u) ∨ (z1 << (supf0 u)) - order1 {s} {z1} = o1 {s} {z1} order0 : {s z1 : Ordinal} → supf0 s o< supf0 u → FClosure A f (supf0 s) z1 → (z1 ≡ supf0 u) ∨ (z1 << supf0 u) - order0 {s} {z1} with trio< s px - ... | tri< a ¬b ¬c = o1 {s} {z1} - ... | tri≈ ¬a b ¬c = o1 {s} {z1} - ... | tri> ¬a ¬b c = ? - ... | tri≈ ¬a b ¬c = ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = f1 ; order = ? } fc ⟫ + order0 {s} {z1} ss<su fc with trio< s px | inspect supf1 s + ... | tri< a ¬b ¬c | record {eq = eq1} = o1 {s} {z1} (subst (λ k → k o< supf0 u) (sym eq1) ss<su ) + (subst (λ k → FClosure A f k z1 ) (sym eq1) fc ) + ... | tri≈ ¬a b ¬c | record {eq = eq1} = o1 {s} {z1} (subst (λ k → k o< supf0 u) (sym eq1) ss<su ) + (subst (λ k → FClosure A f k z1 ) (sym eq1) fc ) + ... | tri> ¬a ¬b c | record {eq = eq1} = ? + ... | tri≈ ¬a b ¬c = ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = f1 ; order = order0 } fc ⟫ where + order0 : {s z1 : Ordinal} → supf0 s o< supf0 u → FClosure A f (supf0 s) z1 + → (z1 ≡ supf0 u) ∨ (z1 << supf0 u) + order0 {s} {z1} ss<su fc with trio< s px | inspect supf1 s + ... | tri< a ¬b ¬c | record {eq = eq1} = o1 {s} {z1} (subst (λ k → k o< supf0 u) (sym eq1) ss<su ) + (subst (λ k → FClosure A f k z1 ) (sym eq1) fc ) + ... | tri≈ ¬a b ¬c | record {eq = eq1} = o1 {s} {z1} (subst (λ k → k o< supf0 u) (sym eq1) ss<su ) + (subst (λ k → FClosure A f k z1 ) (sym eq1) fc ) + ... | tri> ¬a ¬b c | record {eq = eq1} = ? ... | tri> ¬a ¬b c = ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = fcy<sup ; order = order } fc0 ⟫ where -- px o< u , u o< osuc x → u ≡ x -- supf0 x ≡ sp1 ≡ x