Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1208:151f4c971a50
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 03 Mar 2023 19:44:29 +0900 |
parents | 56d501cf0318 |
children | 09e4b32ece2e |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 36 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Fri Mar 03 16:33:56 2023 +0900 +++ b/src/Tychonoff.agda Fri Mar 03 19:44:29 2023 +0900 @@ -206,9 +206,14 @@ uf11 = subst (λ k → odef (filter (MaximumFilter.mf (maxf CSX fp))) k ) uf13 ( filter2 (MaximumFilter.mf (maxf CSX fp)) uf05 uf06 uf12 ) +x⊆Clx : {P : HOD} (TP : Topology P) → {x : HOD} → x ⊆ P → x ⊆ Cl TP x +x⊆Clx {P} TP {x} x<p {y} xy = ⟪ x<p xy , (λ c csc x<c → x<c xy ) ⟫ +P⊆Clx : {P : HOD} (TP : Topology P) → {x : HOD} → x ⊆ P → Cl TP x ⊆ P +P⊆Clx {P} TP {x} x<p {y} xy = proj1 xy + FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP → (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F ) → UFLP {P} TP F UF -FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ? ; P∋limit = ? ; is-limit = ufl00 } where +FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 ; P∋limit = ? ; is-limit = ufl00 } where -- -- take closure of given filter elements -- @@ -219,22 +224,47 @@ -- -- it is set of closed set and has FIP ( F is proper ) -- + ufl08 : {z : Ordinal} → odef (Power P) (& (Cl TP (* z))) + ufl08 {z} w zw with subst (λ k → odef k w ) *iso zw + ... | t = proj1 t + fx→px : {x : Ordinal} → odef (filter F) x → Power P ∋ * x + fx→px {x} fx z xz = f⊆L F fx _ (subst (λ k → odef k z) *iso xz ) + F∋sb : {x : Ordinal} → Subbase CF x → odef (filter F) x + F∋sb {x} (gi record { z = z ; az = az ; x=ψz = x=ψz }) = ufl07 where + ufl09 : * z ⊆ P + ufl09 {y} zy = f⊆L F az _ zy + ufl07 : odef (filter F) x + ufl07 = subst (λ k → odef (filter F) k) &iso ( filter1 F (subst (λ k → odef (Power P) k) (trans (sym x=ψz) (sym &iso)) ufl08 ) + (subst (λ k → odef (filter F) k) (sym &iso) az) + (subst (λ k → * z ⊆ k ) (trans (sym *iso) (sym (cong (*) x=ψz)) ) (x⊆Clx TP {* z} ufl09 ) )) + F∋sb (g∩ {x} {y} sx sy) = filter2 F (subst (λ k → odef (filter F) k) (sym &iso) (F∋sb sx)) + (subst (λ k → odef (filter F) k) (sym &iso) (F∋sb sy)) + (λ z xz → fx→px (F∋sb sx) _ (subst (λ k → odef k _) (sym *iso) (proj1 (subst (λ k → odef k z) *iso xz) ))) ufl01 : {x : Ordinal} → Subbase (* (& CF)) x → o∅ o< x - ufl01 = ? + ufl01 {x} sb = ufl04 where + ufl04 : o∅ o< x + ufl04 with trio< o∅ x + ... | tri< a ¬b ¬c = a + ... | tri≈ ¬a b ¬c = ⊥-elim ( ultra-filter.proper UF (subst (λ k → odef (filter F) k) ( + begin + x ≡⟨ sym b ⟩ + o∅ ≡⟨ sym ord-od∅ ⟩ + & od∅ ∎ ) (F∋sb (subst (λ k → Subbase k x) *iso sb )) )) where open ≡-Reasoning + ... | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) -- -- so we have a limit -- limit : Ordinal - limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ? -- ufl01 + limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 ufl02 : {y : Ordinal } → odef (* (& CF)) y → odef (* y) limit - ufl02 = FIP.is-limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ? -- ufl01 + ufl02 = FIP.is-limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 -- -- Neigbor of limit ⊆ Filter -- - ufl03 : {f v : Ordinal } → odef (filter F) f → Neighbor TP limit v → ¬ ( * f ∩ * v ) =h= od∅ -- because limit is in CF which is a closure + ufl03 : {f v : Ordinal } → odef (filter F) f → Neighbor TP limit v → ¬ ( * f ∩ * v ) =h= od∅ -- because limit is in CF ufl03 {f} {v} ff nei fv=0 = ? pp : {v x : Ordinal} → Neighbor TP limit v → odef (* v) x → Power P ∋ (* x) - pp {v} {x} nei vx z pz = ? + pp {v} {x} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; u⊆v = u⊆v } vx z pz = v⊆P ? ufl00 : {v : Ordinal} → Neighbor TP limit v → * v ⊆ filter F ufl00 {v} nei {x} fx with ultra-filter.ultra UF (pp nei fx) (NEG P (pp nei fx)) ... | case1 fv = subst (λ k → odef (filter F) k) &iso fv