Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1136:181ffd308ab5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 13 Jan 2023 08:22:20 +0900 |
parents | 464efeeb988e |
children | d618788852e5 |
files | src/Topology.agda src/filter.agda |
diffstat | 2 files changed, 14 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Fri Jan 13 08:00:28 2023 +0900 +++ b/src/Topology.agda Fri Jan 13 08:22:20 2023 +0900 @@ -303,8 +303,8 @@ → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FP : filter F ∋ P) → UFLP TP LP F FP FIP→UFLP {P} TP fip {L} LP F FP = record { limit = FIP.limit fip fip00 CFP fip01 ; P∋limit = FIP.L∋limit fip fip00 CFP fip01 ; is-limit = fip02 } where - MX : MaximumFilter ? - MX = F→Maximum {L} {P} LP ? ? F ? ? ? + MX : MaximumFilter LP F + MX = F→Maximum {L} {P} LP ? ? F ? FP ? MF : Filter LP MF = MaximumFilter.mf MX uf : ultra-filter {L} {P} {LP} MF
--- a/src/filter.agda Fri Jan 13 08:00:28 2023 +0900 +++ b/src/filter.agda Fri Jan 13 08:22:20 2023 +0900 @@ -172,7 +172,7 @@ record MaximumFilter {L P : HOD} (LP : L ⊆ Power P) (F : Filter {L} {P} LP) : Set (suc n) where field mf : Filter {L} {P} LP - F⊆mf : filter F ⊂ filter mf + F⊆mf : filter F ⊆ filter mf proper : ¬ (filter mf ∋ od∅) is-maximum : ( f : Filter {L} {P} LP ) → ¬ (filter f ∋ od∅) → ¬ ( filter mf ⊂ filter f ) @@ -184,9 +184,9 @@ max→ultra : {L P : HOD} (LP : L ⊆ Power P) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) - → (F0 : Filter {L} {P} LP) + → (F0 : Filter {L} {P} LP) → {y : Ordinal } → odef (filter F0) y → (mx : MaximumFilter {L} {P} LP F0 ) → ultra-filter ( MaximumFilter.mf mx ) -max→ultra {L} {P} LP CAP F0 mx = record { proper = MaximumFilter.proper mx ; ultra = ultra } where +max→ultra {L} {P} LP CAP F0 {y} mfy mx = record { proper = MaximumFilter.proper mx ; ultra = ultra } where mf = MaximumFilter.mf mx ultra : {p : HOD} → L ∋ p → L ∋ (P \ p) → (filter mf ∋ p) ∨ (filter mf ∋ (P \ p)) ultra {p} Lp Lnp with ODC.∋-p O (filter mf) p @@ -224,11 +224,13 @@ mu03 : (* x \ * (& p)) ⊆ * x mu03 {z} ⟪ xz , _ ⟫ = xz F∋P-p : F ∋ (P \ p ) - F∋P-p = ⟪ Lnp , record { y = ? ; mfy = ? ; y-p⊂x = mu30 } ⟫ where - mu30 : (* ? \ * (& p)) ⊆ * (& (P \ p)) + F∋P-p = ⟪ Lnp , record { y = y ; mfy = mxy ; y-p⊂x = mu30 } ⟫ where + mxy : odef (filter (MaximumFilter.mf mx)) y + mxy = MaximumFilter.F⊆mf mx mfy + mu30 : (* y \ * (& p)) ⊆ * (& (P \ p)) mu30 {z} ⟪ yz , ¬pz ⟫ = subst (λ k → odef k z) (sym *iso) ( ⟪ Pz , (λ pz → ¬pz (subst (λ k → odef k z) (sym *iso) pz )) ⟫ ) where Pz : odef P z - Pz = LP (f⊆L mf ? ) _ yz + Pz = LP (f⊆L mf mxy ) _ yz FisProper : ¬ (filter FisFilter ∋ od∅) -- if F contains p, p is in mf which contract np FisProper ⟪ L0 , record { y = z ; mfy = mfz ; y-p⊂x = z-p⊂x } ⟫ = ⊥-elim ( np (filter1 mf Lp (subst (λ k → odef (filter mf) k) (sym &iso) mfz) mu31) ) where @@ -248,7 +250,7 @@ → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (U : Filter {L} {P} LP) → ultra-filter U → MaximumFilter LP U -ultra→max {L} {P} LP NG CAP U u = record { mf = U ; F⊆mf = ? ; proper = ultra-filter.proper u ; is-maximum = is-maximum } where +ultra→max {L} {P} LP NG CAP U u = record { mf = U ; F⊆mf = λ x → x ; proper = ultra-filter.proper u ; is-maximum = is-maximum } where is-maximum : (F : Filter {L} {P} LP) → (¬ (filter F ∋ od∅)) → (U⊂F : filter U ⊂ filter F ) → ⊥ is-maximum F Prop ⟪ U<F , U⊆F ⟫ = Prop f0 where GT : HOD @@ -315,7 +317,7 @@ fx00 {x} lt = subst (λ k → k o< osuc (& L)) &iso ( ⊆→o≤ (is-filter.f⊆L (proj1 lt )) ) F→Maximum : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) - → (F : Filter {L} {P} LP) → o∅ o< & L → o∅ o< & (filter F) → (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP F + → (F : Filter {L} {P} LP) → o∅ o< & L → {y : Ordinal } → odef (filter F) y → (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP F F→Maximum {L} {P} LP NEG CAP F 0<L 0<F Fprop = record { mf = mf ; F⊆mf = ? ; proper = subst (λ k → ¬ ( odef (filter mf ) k)) (sym ord-od∅) ( is-filter.proper imf) ; is-maximum = {!!} } where FX : HOD @@ -344,8 +346,8 @@ F→ultra : {L P : HOD} (LP : L ⊆ Power P) → (NEG : {p : HOD} → L ∋ p → L ∋ ( P \ p)) → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) - → (F : Filter {L} {P} LP) → (0<L : o∅ o< & L) → (0<F : o∅ o< & (filter F)) → (proper : ¬ (filter F ∋ od∅)) + → (F : Filter {L} {P} LP) → (0<L : o∅ o< & L) → {y : Ordinal} → (0<F : odef (filter F) y) → (proper : ¬ (filter F ∋ od∅)) → ultra-filter ( MaximumFilter.mf (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper )) -F→ultra {L} {P} LP NEG CAP F 0<L 0<F proper = max→ultra {L} {P} LP CAP F (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper ) +F→ultra {L} {P} LP NEG CAP F 0<L 0<F proper = max→ultra {L} {P} LP CAP F 0<F (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper )