Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 651:18357e4bddba
ZChain1 is not strictly positive
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 Jun 2022 18:17:09 +0900 |
parents | 3f0963e1c79f |
children | 8a4c3d68c6c2 |
files | src/zorn.agda |
diffstat | 1 files changed, 20 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jun 27 16:26:39 2022 +0900 +++ b/src/zorn.agda Mon Jun 27 18:17:09 2022 +0900 @@ -418,7 +418,7 @@ ; f-next = ZChain.f-next zc ; chain = ZChain.chain zc ; chain∋x = ZChain.chain∋x zc ; is-max = subst (λ k → {a b : Ordinal} → odef k a → b o< osuc x → (ab : odef A b) → - HasPrev A k ab f ∨ IsSup A k ab → * a < * b → odef k b ) ? is-max } + HasPrev A k ab f ∨ IsSup A k ab → * a < * b → odef k b ) {!!} is-max } zc4 : ZChain A y f x zc4 with ODC.∋-p O A (* x) @@ -578,16 +578,16 @@ no-extrention1 : ( {a b : Ordinal} → odef (chain zc0) a → b o< osuc x → (ab : odef A b) → HasPrev A (chain zc0) ab f ∨ IsSup A (chain zc0) ab → * a < * b → odef (ZChain.chain zc0) b ) → ZChain1 y f x - no-extrention1 imx = record { zc = sz00 ; chain-mono = ? ; f-total = ? } where + no-extrention1 imx = record { zc = sz00 ; chain-mono = {!!} ; f-total = {!!} } where sz00 : {z : Ordinal} → z o≤ x → ZChain A y f z - sz00 {z} z≤x = ? + sz00 {z} z≤x = {!!} sz02 : ZChain1 y f x sz02 with ODC.∋-p O A (* x) - ... | no noax = no-extrention1 ? + ... | no noax = no-extrention1 {!!} ... | yes ax with ODC.p∨¬p O ( HasPrev A (chain zc0) ax f ) - ... | case1 pr = record { zc = ? ; chain-mono = ? ; f-total = ? } where + ... | case1 pr = record { zc = {!!} ; chain-mono = {!!} ; f-total = {!!} } where ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (chain zc0) ax ) - ... | case1 is-sup = ? where -- x is a sup of zc 1 + ... | case1 is-sup = {!!} where -- x is a sup of zc 1 sup0 : SUP A (chain zc0) sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where x21 : {y : HOD} → (chain zc0) ∋ y → (y ≡ * x) ∨ (y < * x) @@ -600,12 +600,12 @@ x=sup = sym &iso chain0 = chain zc0 sc<A : {y : Ordinal} → odef chain0 y ∨ FClosure A f (& sp) y → y o< & A - sc<A {y} (case1 zx) = subst (λ k → k o< (& A)) &iso ( c<→o< ? ) + sc<A {y} (case1 zx) = subst (λ k → k o< (& A)) &iso ( c<→o< {!!} ) sc<A {y} (case2 fx) = subst (λ k → k o< (& A)) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso) (A∋fc (& sp) f mf fx )) ) schain : HOD schain = record { od = record { def = λ x → odef chain0 x ∨ (FClosure A f (& sp) x) } ; odmax = & A ; <odmax = λ {y} sy → sc<A {y} sy } - ... | case2 ¬x=sup = ? - ... | no ¬ox = record { zc = zcu ; chain-mono = sz03 ; f-total = ? } where + ... | case2 ¬x=sup = {!!} + ... | no ¬ox = record { zc = zcu ; chain-mono = sz03 ; f-total = {!!} } where pzc : (z : Ordinal) → z o< x → ZChain A y f z pzc z z<x = ind f mf ay z (λ w w<px → zc (prev z z<x) (o<→≤ w<px) ) Uz⊆A : {z : Ordinal} → UZFChain A f x y pzc z ∨ FClosure A f y z → odef A z @@ -618,12 +618,20 @@ ; <odmax = λ lt → subst (λ k → k o< & A ) &iso (c<→o< (subst (λ k → odef A k ) (sym &iso) (Uz⊆A lt))) } zcu1 : { z : Ordinal } → z o≤ x → ZChain1 y f z zcu1 {z} z≤x with osuc-≡< z≤x - ... | case1 z=x = record { zc = ? ; chain-mono = ? ; f-total = ? } + ... | case1 z=x = record { zc = {!!} ; chain-mono = {!!} ; f-total = {!!} } ... | case2 z<x = prev z z<x zcu : { z : Ordinal } → z o≤ x → ZChain A y f z - zcu {z} z≤x = ind f mf ay z (λ w w<px → zc (zcu1 z≤x ) (o<→≤ w<px) ) + zcu {z} z≤x with osuc-≡< z≤x + ... | case1 z=x = record { chain = Uz } + ... | case2 z<x = ind f mf ay z (λ w w<px → zc (prev z z<x ) (o<→≤ w<px) ) sz03 : {a b : Ordinal} → (a≤b : a o≤ b) → (b≤x : b o≤ x ) → chain (zcu {a} (OrdTrans a≤b b≤x)) ⊆' chain (zcu b≤x ) - sz03 = ? + sz03 {a} {b} a≤b b≤x {i} ai with osuc-≡< (OrdTrans a≤b b≤x) | osuc-≡< b≤x + ... | case1 a=x | case1 b=x = {!!} + ... | case1 a=x | case2 b<x = ⊥-elim ( osuc-< (subst (λ k → k o< osuc b ) a=x a≤b) b<x ) + ... | case2 a<x | case1 b=x = case1 record { u = a ; u<x = a<x ; chain∋z = subst (λ k → odef k i) {!!} ai } where + sz04 : {!!} + sz04 = {!!} + ... | case2 a<x | case2 b<x = {!!} zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM